
kivitendo 3.9.1: Installation,
Konfiguration, Entwicklung

kivitendo 3.9.1: Installation, Konfiguration, Entwicklung

iii

Inhaltsverzeichnis
1. Aktuelle Hinweise ... 1
2. Installation und Grundkonfiguration ... 2

2.1. Übersicht .. 2
2.2. Benötigte Software und Pakete ... 2

2.2.1. Betriebssystem ... 2
2.2.2. Benötigte Perl-Pakete installieren .. 3
2.2.3. Andere Pakete installieren ... 8

2.3. Installation mittels Ansible auf Ubuntu 22.04 .. 8
2.4. Manuelle Installation des Programmpaketes .. 9

2.4.1. Installation mit git .. 9
2.4.2. Installation über die Github Website .. 10
2.4.3. Restliche Verzeichnisse ändern und bearbeiten ... 10

2.5. kivitendo-Konfigurationsdatei .. 11
2.5.1. Einführung .. 11
2.5.2. Abschnitte und Parameter .. 11
2.5.3. Versionen vor 2.6.3 ... 12

2.6. Anpassung der PostgreSQL-Konfiguration ... 13
2.6.1. Zeichensätze/die Verwendung von Unicode/UTF-8 ... 13
2.6.2. Änderungen an Konfigurationsdateien .. 13
2.6.3. Erweiterung für servergespeicherte Prozeduren .. 13
2.6.4. Erweiterung für Trigram Prozeduren .. 14
2.6.5. Datenbankbenutzer anlegen .. 14

2.7. Webserver-Konfiguration .. 15
2.7.1. Grundkonfiguration mittels CGI .. 15
2.7.2. Konfiguration für FastCGI/FCGI ... 15
2.7.3. Authentifizierung mittels HTTP Basic Authentication ... 18
2.7.4. Aktivierung von mod_rewrite/directory_match für git basierte Installationen 18
2.7.5. Weitergehende Konfiguration .. 18
2.7.6. Aktivierung von Apache2 modsecurity ... 18

2.8. Der Task-Server ... 18
2.8.1. Verfügbare und notwendige Konfigurationsoptionen ... 19
2.8.2. Konfiguration der Mandanten für den Task-Server .. 19
2.8.3. Automatisches Starten des Task-Servers beim Booten ... 19
2.8.4. Wie der Task-Server gestartet und beendet wird ... 20

2.9. Konfiguration der Hintergrund-Jobs ... 21
2.9.1. SetNumberRange .. 21
2.9.2. ImportRecordEmails ... 22

2.10. Benutzerauthentifizierung und Administratorpasswort .. 23
2.10.1. Grundlagen zur Benutzerauthentifizierung ... 23
2.10.2. Administratorpasswort ... 23
2.10.3. Authentifizierungsdatenbank ... 23
2.10.4. Passwortüberprüfung ... 24
2.10.5. Name des Session-Cookies ... 25
2.10.6. Anlegen der Authentifizierungsdatenbank .. 25

2.11. Mandanten-, Benutzer- und Gruppenverwaltung .. 25
2.11.1. Zusammenhänge ... 25
2.11.2. Mandanten, Benutzer und Gruppen .. 26
2.11.3. Datenbanken anlegen ... 26
2.11.4. Gruppen anlegen ... 26
2.11.5. Benutzer anlegen .. 26
2.11.6. Mandanten anlegen ... 27

2.12. Drucker- und Systemverwaltung .. 27
2.12.1. Druckeradministration .. 27
2.12.2. System sperren / entsperren .. 27

2.13. E-Mail ... 27

kivitendo 3.9.1: Installation,
Konfiguration, Entwicklung

iv

2.13.1. E-Mail-Versand aus kivitendo heraus .. 27
2.13.2. Versendete E-Mails über IMAP exportieren ... 28
2.13.3. E-Mails in kivitendo importieren ... 29

2.14. Drucken mit kivitendo ... 30
2.14.1. Vorlagenverzeichnis anlegen ... 30
2.14.2. Der Druckvorlagensatz marei .. 31
2.14.3. Der Druckvorlagensatz RB ... 35
2.14.4. Der Druckvorlagensatz rev-odt .. 35
2.14.5. Allgemeine Hinweise zu LaTeX Vorlagen ... 35

2.15. OpenDocument-Vorlagen .. 36
2.15.1. Grundeinstellung .. 36
2.15.2. Direkte Erzeugung von PDF-Dateien .. 36
2.15.3. Vorbereitungen ... 37
2.15.4. Schweizer QR-Rechnung mit OpenDocument Vorlagen ... 38

2.16. Nomenklatur .. 39
2.16.1. Datum bei Buchungen ... 39

2.17. Konfiguration zur Einnahmenüberschussrechnung/Bilanzierung: EUR ... 40
2.17.1. Einführung .. 40
2.17.2. Konfigurationsparameter .. 40
2.17.3. Festlegen der Parameter ... 40
2.17.4. Bemerkungen zur Bestandsmethode ... 41
2.17.5. Bekannte Probleme ... 41

2.18. SKR04 19% Umstellung für innergemeinschaftlichen Erwerb .. 41
2.18.1. Einführung .. 41
2.18.2. Konto 3804 manuell anlegen .. 41

2.19. Verhalten des Bilanzberichts .. 45
2.20. Jahresabschluss ... 45
2.21. Erfolgsrechnung .. 46
2.22. Rundung in Verkaufsbelegen ... 46
2.23. Einstellungen pro Mandant ... 47
2.24. kivitendo ERP verwenden ... 47

3. Features und Funktionen ... 48
3.1. Wiederkehrende Rechnungen .. 48

3.1.1. Einführung .. 48
3.1.2. Konfiguration .. 48
3.1.3. Spezielle Variablen ... 49
3.1.4. Auflisten ... 50
3.1.5. Erzeugung der eigentlichen Rechnungen ... 51
3.1.6. Erste Rechnung für aktuellen Monat erstellen .. 51

3.2. Bankerweiterung ... 51
3.2.1. Einführung .. 51

3.3. Dokumentenvorlagen und verfügbare Variablen .. 51
3.3.1. Einführung .. 51
3.3.2. Variablen ausgeben ... 51
3.3.3. Verwendung in Druckbefehlen .. 52
3.3.4. Anfang und Ende der Tags verändern .. 52
3.3.5. Zuordnung von den Dateinamen zu den Funktionen .. 52
3.3.6. Sprache, Drucker und E-Mail ... 53
3.3.7. Allgemeine Variablen, die in allen Vorlagen vorhanden sind ... 53
3.3.8. Variablen in Rechnungen ... 59
3.3.9. Variablen in Mahnungen und Rechnungen über Mahngebühren ... 64
3.3.10. Variablen in anderen Vorlagen ... 66
3.3.11. Blöcke, bedingte Anweisungen und Schleifen .. 68
3.3.12. Markup-Code zur Textformatierung innerhalb von Formularen .. 69
3.3.13. Hinweise zur Anrede ... 69

3.4. Excel-Vorlagen ... 70
3.4.1. Zusammenfassung .. 70
3.4.2. Bedienung ... 70

kivitendo 3.9.1: Installation,
Konfiguration, Entwicklung

v

3.4.3. Variablensyntax .. 70
3.4.4. Einschränkungen .. 70

3.5. Mandantenkonfiguration Lager .. 70
3.6. Schweizer Kontenpläne .. 71
3.7. Artikelklassifizierung ... 71

3.7.1. Übersicht .. 71
3.7.2. Basisklassifizierung .. 72
3.7.3. Attribute ... 72
3.7.4. Zwei-Zeichen Abkürzung ... 72

3.8. Dateiverwaltung (Mini-DMS) .. 72
3.8.1. Übersicht .. 72
3.8.2. Struktur .. 73
3.8.3. Anwendung ... 74
3.8.4. Konfigurierung ... 76

3.9. Webshop-Api ... 78
3.9.1. Rechte für die Webshopapi .. 78
3.9.2. Konfiguration .. 78
3.9.3. Webshopartikel .. 79
3.9.4. Bestellimport ... 80
3.9.5. Mapping der Daten ... 82

3.10. ZUGFeRD Rechnungen .. 82
3.10.1. Vorbedingung ... 82
3.10.2. Übersicht ... 82
3.10.3. Erstellen von ZUGFeRD Rechnungen in Kivitendo ... 83
3.10.4. Einlesen von ZUGFeRD Rechnungen in Kivitendo ... 83

3.11. Reklamationen .. 83
3.11.1. Konfiguration des Reklamationsmodul .. 83
3.11.2. Reklamation erfassen ... 84
3.11.3. Reklamationen auswerten ... 85

3.12. Dispositionsmanager/Einkaufshelfer .. 85
3.12.1. So kommen die Artikel in den Einkaufswarenkorb: ... 86
3.12.2. Der Einkaufswarenkorb ... 87

3.13. Zeiterfassung .. 88
3.13.1. Konfiguration ... 88
3.13.2. Erfassen .. 89
3.13.3. Bericht .. 89
3.13.4. Konvertierung zu Lieferscheinen ... 89

4. Entwicklerdokumentation .. 92
4.1. Globale Variablen ... 92

4.1.1. Wie sehen globale Variablen in Perl aus? .. 92
4.1.2. Warum sind globale Variablen ein Problem? .. 92
4.1.3. Kanonische globale Variablen ... 93
4.1.4. Ehemalige globale Variablen .. 96

4.2. Entwicklung unter FastCGI .. 97
4.2.1. Allgemeines .. 97
4.2.2. Programmende und Ausnahmen .. 97
4.2.3. Globale Variablen ... 97
4.2.4. Performance und Statistiken ... 97

4.3. Programmatische API-Aufrufe .. 97
4.3.1. Einführung .. 97
4.3.2. Wahl des Mandanten ... 98
4.3.3. HTTP-»Basic«-Authentifizierung .. 98
4.3.4. Authentifizierung mit Parametern .. 98
4.3.5. Beispiele ... 98

4.4. SQL-Upgradedateien ... 98
4.4.1. Einführung .. 98
4.4.2. Format der Kontrollinformationen ... 99
4.4.3. Format von in Perl geschriebenen Datenbankupgradescripten .. 100

kivitendo 3.9.1: Installation,
Konfiguration, Entwicklung

vi

4.4.4. Hilfsscript dbupgrade2_tool.pl ... 100
4.5. Translations and languages ... 101

4.5.1. Introduction ... 101
4.5.2. Character set .. 101
4.5.3. File structure .. 101

4.6. Die kivitendo-Test-Suite ... 103
4.6.1. Einführung .. 103
4.6.2. Voraussetzungen ... 103
4.6.3. Existierende Tests ausführen ... 104
4.6.4. Bedeutung der verschiedenen Test-Scripte ... 104
4.6.5. Neue Test-Scripte erstellen ... 105

4.7. Stil-Richtlinien .. 106
4.8. Dokumentation erstellen ... 108

4.8.1. Einführung .. 108
4.8.2. Benötigte Software .. 108
4.8.3. PDFs und HTML-Seiten erstellen .. 109
4.8.4. Einchecken in das Git-Repository .. 109

1

1
Aktuelle Hinweise

Aktuelle Installations- und Konfigurationshinweise gibt es:

• im Community-Forum: https://forum.kivitendo.de

• im Kunden-Forum: https://www.kivitendo.de/redmine/projects/forum/boards/

• in der doc/UPGRADE Datei im doc-Verzeichnis der Installation

• Im Schulungs- und Dienstleistungsangebot der entsprechenden kivitendo-Partner: https://www.kivitendo.de/partner.html

https://forum.kivitendo.de
https://www.kivitendo.de/redmine/projects/forum/boards/
https://www.kivitendo.de/partner.html

2

2
Installation und Grundkonfiguration

2.1. Übersicht
Die Installation von kivitendo umfasst mehrere Schritte. Die folgende Liste kann sowohl für Neulinge als auch für alte Hasen
als Übersicht und Stichpunktliste zum Abhaken dienen, um eine Version mit minimalen Features möglichst schnell zum Lau-
fen zu kriegen.

1. Voraussetzungen überprüfen: kivitendo benötigt gewisse Ressourcen und benutzt weitere Programme. Das Kapitel
"Abschnitt 2.2, „Benötigte Software und Pakete“ [2]" erläutert diese. Auch die Liste der benötigten Perl-Module befin-
det sich hier.

2. Installation von kivitendo: Diese umfasst die "Manuelle Installation des Programmpaketes [9]" sowie grundlegende
Einstellungen, die der "Abschnitt 2.5, „kivitendo-Konfigurationsdatei“ [11]" erläutert.

3. Konfiguration externer Programme: hierzu gehören die Datenbank ("Abschnitt 2.6, „Anpassung der PostgreSQL-Konfigu-
ration“ [13]") und der Webserver ("Abschnitt 2.7, „Webserver-Konfiguration“ [15]").

4. Benutzerinformationen speichern können: man benötigt mindestens eine Datenbank, in der Informationen zur Authentifizie-
rung sowie die Nutzdaten gespeichert werden. Wie man das als Administrator macht, verrät "Abschnitt 2.10, „Benutzerau-
thentifizierung und Administratorpasswort“ [23]".

5. Benutzer, Gruppen und Datenbanken anlegen: wie dies alles zusammenspielt erläutert "Abschnitt 2.11, „Mandanten-,
Benutzer- und Gruppenverwaltung“ [25]".

6. Los geht's: alles soweit erledigt? Dann kann es losgehen: "Abschnitt 2.24, „kivitendo ERP verwenden“ [47]"

Alle weiteren Unterkapitel in diesem Kapitel sind ebenfalls wichtig und sollten vor einer ernsthaften Inbetriebnahme gelesen
werden.

2.2. Benötigte Software und Pakete

2.2.1. Betriebssystem
kivitendo ist für Linux konzipiert, und sollte auf jedem unixoiden Betriebssystem zum Laufen zu kriegen sein. Getestet ist
diese Version im speziellen auf Debian und Ubuntu, grundsätzlich wurde bei der Auswahl der Pakete aber darauf Rücksicht
genommen, dass es ohne große Probleme auf den derzeit aktuellen verbreiteten Distributionen läuft.

Mitte 2024 (ab Version 3.9) empfehlen wir:

• Debian

• 11.0 "Bullseye"

• 12.0 "Bookworm"

• Ubuntu

Installation und Grundkonfiguration

3

• 20.04 "Focal Fossa" LTS

• 22.04 "Jammy Jellyfish" LTS

• openSUSE Leap 15.5 und SUSE Linux Enterprise Server 15 SP4

• Fedora 39

2.2.2. Benötigte Perl-Pakete installieren
Zum Betrieb von kivitendo werden zwingend ein Webserver (meist Apache) und ein Datenbankserver (PostgreSQL) in einer
aktuellen Version (s.a. Liste der unterstützten Betriebssysteme) benötigt.

Zusätzlich benötigt kivitendo einige Perl-Pakete, die nicht Bestandteil einer Standard-Perl-Installation sind. Um nach der
Installation von Kivitendo zu überprüfen, ob die erforderlichen Pakete installiert und aktuell genug sind, wird ein Script mitge-
liefert, das wie folgt aufgerufen wird:

./scripts/installation_check.pl

Anmerkung

Das Paket List::MoreUtils wird benötigt um das Script ausführen zu können!

Die vollständige Liste der benötigten Perl-Module lautet:

• Algorithm::CheckDigits

• Archive::Zip

• CGI

• Clone

• Config::Std

• Daemon::Generic

• DateTime

• DateTime::Event::Cron

• DateTime::Format::Strptime

• DateTime::Set

• DBI

• DBD::Pg

• Digest::SHA

• Email::Address

• Email::MIME

• Encode::IMAPUTF7

• Exception::Class

• FCGI (nicht Versionen 0.68 bis 0.71 inklusive; siehe Abschnitt 2.7.2.3, „Getestete Kombinationen aus Webservern und Plu-
gin“ [16])

Installation und Grundkonfiguration

4

• File::Copy::Recursive

• File::Flock

• File::MimeInfo

• File::Slurp

• GD

• HTML::Parser

• HTML::Restrict

• Image::Info

• Imager

• Imager::QRCode

• IPC::Run

• JSON

• List::MoreUtils

• List::UtilsBy

• LWP::Authen::Digest

• LWP::UserAgent

• Mail::IMAPClient

• Net::SMTP::SSL (optional, bei E-Mail-Versand über SSL; siehe Abschnitt "E-Mail-Versand über einen SMTP-Ser-
ver [28]")

• Net::SSLGlue (optional, bei E-Mail-Versand über TLS; siehe Abschnitt "E-Mail-Versand über einen SMTP-Ser-
ver [28]")

• Math::Round

• Params::Validate

• PBKDF2::Tiny

• PDF::API2

• Regexp::IPv6

• Rest::Client

• Rose::Object

• Rose::DB

• Rose::DB::Object Version 0.788 oder neuer

• Set::Infinite

• String::ShellQuote

• Sort::Naturally

Installation und Grundkonfiguration

5

• Template

• Text::CSV_XS

• Text::Iconv

• Text::Unidecode

• Try::Tiny

• URI

• XML::Writer

• XML::LibXML

• YAML::XS oder YAML

• UUID::Tiny

In der Version v3.9.1 sind keine neuen Pakete hinzugekommen.

In der Version v3.9.0 sind die folgenden Pakete hinzugekommen: Mail::IMAPClient, Encode::IMAPUTF7. Nicht
mehr benötigt wird CAM::PDF.

In der Version v3.8.0 sind keine neuen Pakete hinzugekommen.

In der Version v3.7.0 sind keine neuen Pakete hinzugekommen.

Seit Version größer v3.6.0 sind die folgenden Pakete hinzugekommen: IPC::Run

Seit Version größer v3.5.8 sind die folgenden Pakete hinzugekommen: Imager, Imager::QRCode Rest::Client
Term::ReadLine::Gnu

Seit Version größer v3.5.6 sind die folgenden Pakete hinzugekommen: Try::Tiny, Math::Round

Seit Version größer v3.5.6 sind die folgenden Pakete hinzugekommen: XML::LibXML

Seit Version größer v3.5.3 sind die folgenden Pakete hinzugekommen: Exception::Class

Seit Version größer v3.5.1 sind die folgenden Pakete hinzugekommen: Set::Infinite, List::UtilsBy,
DateTime::Set, DateTime::Event::Cron Daemon::Generic, DateTime::Event::Cron, File::Flock,
File::Slurp

Seit Version größer v3.5.0 sind die folgenden Pakete hinzugekommen: Text::Unidecode, LWP::Authen::Digest,
LWP::UserAgent

Seit Version v3.4.0 sind die folgenden Pakete hinzugekommen: Algorithm::CheckDigits, PBKDF2::Tiny

Seit Version v3.2.0 sind die folgenden Pakete hinzugekommen: GD, HTML::Restrict, Image::Info

Seit v3.0.0 sind die folgenden Pakete hinzugekommen: File::Copy::Recursive.

Seit v2.7.0 sind die folgenden Pakete hinzugekommen: Email::MIME, Net::SMTP::SSL, Net::SSLGlue.

Gegenüber Version 2.6.0 sind zu dieser Liste 2 Pakete hinzugekommen, URI und XML::Writer sind notwendig. Ohne star-
tet kivitendo nicht.

Gegenüber Version 2.6.3 ist JSON neu hinzugekommen.

Email::Address und List::MoreUtils wurden aus dem Lieferumfang entfernt. Es wird empfohlen diese Module
zusammen mit den anderen als Bibliotheken zu installieren.

Installation und Grundkonfiguration

6

Gegenüber Version 2.6.1 sind parent, DateTime, Rose::Object, Rose::DB und Rose::DB::Object neu hinzu-
gekommen. IO::Wrap wurde entfernt.

2.2.2.1. Debian und Ubuntu

Für Debian und Ubuntu stehen die meisten der benötigten Pakete als Debian-Pakete zur Verfügung. Sie können mit folgendem
Befehl installiert werden:

apt install apache2 libarchive-zip-perl libclone-perl \
 libconfig-std-perl libdatetime-perl libdbd-pg-perl libdbi-perl \
 libemail-address-perl libemail-mime-perl libfcgi-perl libjson-perl \
 liblist-moreutils-perl libnet-smtp-ssl-perl libnet-sslglue-perl \
 libparams-validate-perl libpdf-api2-perl librose-db-object-perl \
 librose-db-perl librose-object-perl libsort-naturally-perl \
 libstring-shellquote-perl libtemplate-perl libtext-csv-xs-perl \
 libtext-iconv-perl liburi-perl libxml-writer-perl libyaml-perl \
 libimage-info-perl libgd-gd2-perl libapache2-mod-fcgid \
 libfile-copy-recursive-perl postgresql libalgorithm-checkdigits-perl \
 libcrypt-pbkdf2-perl git libcgi-pm-perl libtext-unidecode-perl libwww-perl \
 postgresql-contrib poppler-utils libhtml-restrict-perl \
 libdatetime-set-perl libset-infinite-perl liblist-utilsby-perl \
 libdaemon-generic-perl libfile-flock-perl libfile-slurp-perl \
 libfile-mimeinfo-perl libpbkdf2-tiny-perl libregexp-ipv6-perl \
 libdatetime-event-cron-perl libexception-class-perl \
 libxml-libxml-perl libtry-tiny-perl libmath-round-perl \
 libimager-perl libimager-qrcode-perl librest-client-perl libipc-run-perl \
 libencode-imaputf7-perl libmail-imapclient-perl libuuid-tiny-perl

Sollten Pakete nicht zu Verfügung stehen, so können diese auch mittels CPAN installiert werden. Ferner muss für Ubuntu das
Repository "Universe" aktiv sein (s.a. Anmerkungen).

Anmerkung
Die Perl Pakete für Ubuntu befinden sich im "Universe" Repository. Falls dies nicht aktiv ist, kann dies mit fol-
gendem Aufruf aktiviert werden:

add-apt-repository universe

2.2.2.2. Fedora

Für Fedora stehen die meisten der benötigten Perl-Pakete als RPM-Pakete zur Verfügung. Sie können mit folgendem Befehl
installiert werden:

dnf install httpd mod_fcgid postgresql-server postgresql-contrib\
 perl-Algorithm-CheckDigits perl-Archive-Zip perl-CPAN perl-Class-XSAccessor \
 perl-Clone perl-Config-Std perl-DBD-Pg perl-DBI perl-Daemon-Generic \
 perl-DateTime perl-DateTime-Set perl-Email-Address perl-Email-MIME perl-FCGI \
 perl-File-Copy-Recursive perl-File-Flock perl-File-MimeInfo perl-File-Slurp \
 perl-GD perl-HTML-Restrict perl-JSON perl-List-MoreUtils perl-List-UtilsBy \
 perl-Net-SMTP-SSL perl-Net-SSLGlue perl-PBKDF2-Tiny perl-PDF-API2 \
 perl-Params-Validate perl-Regexp-IPv6 perl-Rose-DB perl-Rose-DB-Object \
 perl-Rose-Object perl-Sort-Naturally perl-String-ShellQuote \
 perl-Template-Toolkit perl-Text-CSV_XS perl-Text-Iconv perl-URI perl-XML-Writer \
 perl-YAML perl-libwww-perl

2.2.2.3. openSUSE Leap 15.4 und SUSE Linux Enterprise Server 15

Für openSUSE Leap 15.4, sowie SLES 15 stehen alle benötigten Perl-Pakete als RPM-Pakete zur Verfügung.

Installation und Grundkonfiguration

7

Damit diese installiert werden können, muß das System die erforderlichen Repositories kennen und Zugriff über das Internet
darauf haben.

Daher machen wir die Repositories dem System bekannt.

Um die zusätzlichen Repositories für die Installation zur Verfügung zu stellen, kann man diese mit YaST oder auch in einem
Terminal auf der Konsole bekannt geben. Wir beschränken uns hier mit der Eingabe auf der Konsole. In den allermeisten Fäl-
len verwenden die Administratoren eine sichere SSH-Verbindung zum zu administrierenden Server.

Dazu geben wir folgenden Befehl ein:

Das ERP kivitendo Repository:

zypper addrepo -f -p 90 \
 http://download.opensuse.org/repositories/Application:/ERP:/kivitendo/15.4/ \
 "OSS-15.4-App_ERP_kivitendo"

Das ERP kivitendo Evaluation Repository:

zypper addrepo -f -p 90 \
 http://download.opensuse.org/repositories/Application:/ERP:/kivitendo:/eval/15.4/ \
 "OSS-15.4-App_ERP_kivitendo_eval"

Danach geben wir noch die beiden folgenden Befehle ein:

zypper clean

zypper refresh

Sollte zypper eine Meldung ausgeben, ob der Repositorie Key abgelehnt, nicht vertraut oder für immer akzeptiert werden soll,
ist die Beantwortung durch drücken der "i" Taste am besten geeignet. Wer noch mehr über zypper erfahren möchte, kann sich
einmal die zypper Hilfe anschauen.

zypper --help

Anmerkung

Offiziell wird von openSUSE nur noch Versionen ab 15.4 unterstützt. Die SuSE Macher haben ab Version
15.x einen großen Umbau in der Verwaltung der Pakete vorgenommen, das heißt, der Paketumfang ist der SLE
15 als Programmunterbau angepasst. Dies gilt besonders der openSUSE Distribution. Es gibt ja einmal die
openSUSE Distri und die professionelle SLE (SUSE Linux Enterprise) Version. Dadurch sind viele Pakete aus
dem ursprünglich nur für die openSUSE geltenen Repositorie enfernt worden, aber auch viele auf aktuellem
Stand gehalten. Mit der openSUSE Leap 15.4 ist es dem Benutzer ganz einfach gemacht worden zur professionel-
len SUSE Linux Enterprise zu wechseln, da die RPM Paketbasis identisch ist.

Ob openSUSE Leap oder SLE, man kann die Distribution auch als reine Text Version, also ohne KDE Oberfläche aufsetzen.
Vorteil hierbei ist, dass weniger Balast und unnötige Pakte installiert werden. Diese Variante wird gerne auch als 'Server', 'mini-
male Server' oder auch 'minmal X' Variante bezeichnet.

Als Administrator hatte man jedoch auch immer die Möglichkeit, bei der Installation der Distribution die KDE (graphische)
Oberfläche zu aktivieren. In dieser Konstellation hat man die Möglichkeit, eine VNC Verbindung vom administrativen Client
zu verwenden. Ist das nicht eingerichtet, arbeitet der Admin dann direkt am Bildschirm des Servers. Nun loggen wir uns am
Server direkt ein, starten Yast2 in einer Konsole wie folgt:

yast2 return.

Oder über die Menüführung wie folgt: Ein Klick auf das runde Icon, ganz links unten in der Menüleiste, dann die Maus verfah-
ren auf System und YaST.

Im weiteren Verlauf der Installation, beschränken wir uns mit dem Installations Werkzeug zypper. Zypper ist ein Komandozei-
len basiertes Installations Tool, welches bei openSUSE Standard ist. Zypper weist ein etwas eigenartiges Verhalten auf, dass

Installation und Grundkonfiguration

8

sich in etwa wie folgt darstellt. Hat man die Repositories eingerichtet, kann man diese mit Yast als auch mit Zypper benutzen,
setzt man einen Befehl wie etwa: zypper up ab, so findet zypper mehr neuere Programmversionen als Yast. Ich habe im allge-
meinen noch keine Nachteile damit erlebt.

Programmpakete können mit folgendem Befehl installiert werden:

zypper install Paketname

Es wird empfohlen zusätzliche Pakete nicht direkt mit CPAN zu installieren, da man diese auch über andere Repositories
beziehen kann, die bei openSUSE zur Verfügung stehen. Dadurch hat man den Vorteil, dass die Pakete mit YaST verwaltet
werden, also wieder deinstalliert oder durch neuere ersetzt werden können. Zudem kann man auch noch eventuelle Bugs an
openSUSE senden und diese dem Maintainer melden.

zypper install kivitendo-erp

Für Entwickler installiert man noch das folgende Paket:

zypper install kivitendo-erp-devel

2.2.3. Andere Pakete installieren
• poppler-utils 'pdfinfo' zum Erkennen der Seitenanzahl bei der PDF-Generierung

• Postgres Trigram-Index Für datenbankoptimierte Suchanfragen. Bspw. im Paket postgresql-contrib enthal-
ten

Debian und Ubuntu:

apt install postgresql-contrib poppler-utils

Fedora:

dnf install poppler-utils postgresql-contrib

openSUSE:

Nicht notwendig, da poppler-utils bereits i.v.m. kivitendo-erp installiert wird

2.3. Installation mittels Ansible auf Ubuntu
22.04
Ansible ist ein Open-Source-Automatisierungstool, das verwendet wird, um die Bereitstellung, Konfiguration und Verwaltung
von IT-Systemen zu automatisieren. Dabei führt es Aufgaben über SSH auf entfernten Rechnern (Hosts) aus. Die Aufgaben
werden dabei deklarativ als YAML Dateien, den sogenannten Playbooks, übergeben. Benötigt wird lediglich python und ansi-
ble ab Version 2.10.

Alle benötigten Konfigurationsdateien und das Playbook sind auf dem kivitendo github Account unter dem Repository namens
kivitendo-ansible1 verfügbar. Das Repo kann lokal mit folgendem git-Befehl "geklont" werden:

git clone https://github.com/kivitendo/kivitendo-ansible

In diesem Repository befindet sich auch eine Readme.md, die aktuelle Installationshinweise auf englisch enthält.

Um die Installation zu starten, wechseln Sie dann zunächst in den erstellten Ordner 'kivitendo-ansible' und editieren die Datei
inventory.

cd kivitendo-ansible

1 https://github.com/kivitendo/kivitendo-ansible

https://github.com/kivitendo/kivitendo-ansible
https://github.com/kivitendo/kivitendo-ansible

Installation und Grundkonfiguration

9

vim inventory

Der/die Hosts auf denen Kivitendo installiert werden soll wird dann in dieser Datei ('inventory') eingefügt, bspw. die

192.168.1.121

oder als Namen:

kivi.meine-lokale-domaene.de

Zusätzliche Parameter könnten erforderlich sein, bspw. der Benutzer für den SSH-Login:

kivi.meine-lokale-domaene.de ansible_user=myuser

Danach kann das Playbook mittels:

ansible-playbook --ask-become main.yml

ausgeführt werden, je nach Konfiguration wird man noch aufgefordert das BECOME password einzutragen, hierbei handelt es
sich um das Passwort des Benutzers, über den die Installation dann auf dem Ziel-Rechner ausgeführt wird.

Nach erfolgreichen Ausführen des Playbooks ist Kivitendo dann über den Browser erreichbar unter http://<IP des
rechners>/kivitendo-erp/

Nun muss noch eine Datenbank für Benutzer und Mandanten angelegt werden. Dies kann über die Weboberfläche getan
werden, indem man sich mit dem Passwort admin123 in der Administrationsoberfläche anmeldet. Weitere Details siehe
Abschnitt "Abschnitt 2.10, „Benutzerauthentifizierung und Administratorpasswort“ [23]"

2.4. Manuelle Installation des Programmpake-
tes

2.4.1. Installation mit git
Wir empfehlen eine Installation mittels des Versionsmanager git. Hierfür muss ein git-Client installiert sein. Damit ist man sehr
viel flexibler für zukünftige Upgrades. Installations-Anleitung (bitte die Pfade anpassen) bspw. wie folgt:

cd /var/www/
git clone https://github.com/kivitendo/kivitendo-erp.git
cd kivitendo-erp/
git checkout `git tag -l | egrep -ve "(alpha|beta|rc)" | tail -1`

Erläuterung: Der Befehl wechselt zur letzten Stable-Version (git tag -l listet alle Tags auf, das egrep schmeisst alle Einträge mit
alpha, beta oder rc raus und das tail gibt davon den obersten Treffer zurück). Sehr sinnvoll ist es, direkt im Anschluss einen
eigenen Branch zu erzeugen, um bspw. seine eigenen Druckvorlagen-Anpassungen damit zu verwalten. Hierfür reicht ein sim-
ples

 git checkout -b meine_eigenen_änderungen

nach dem letzten Kommando (weiterführende Informationen Git Magic2).

Ein beispielhafter Workflow für Druckvorlagen-Anpassungen von 3.4.1 nach 3.5:

$ git clone https://github.com/kivitendo/kivitendo-erp.git
$ cd kivitendo-erp/
$ git checkout release-3.4.1 # das ist ein alter release aus dem wir starten ...
$ git checkout -b meine_eigene_änderungen # unser lokaler branch - unabhängig von allen anderen

2 http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html

http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html
http://www-cs-students.stanford.edu/~blynn/gitmagic/index.html

Installation und Grundkonfiguration

10

$ git add templates/mein_druck # das sind unsere druckvorlagen inkl. produktbilder
$ git commit -m "juhu tolle änderungen"

[meine_aenderungen 1d89e41] juhu tolle ändernungen
 4 files changed, 380 insertions(+)
 create mode 100644 templates/mein_druck/img/webdav/tesla.png
 create mode 100644 templates/mein_druck/mahnung.tex
 create mode 100644 templates/mein_druck/zahlungserinnerung_zwei.tex
 create mode 100644 templates/mein_druck/zahlungserinnerung_zwei_invoice.tex

5 Jahre später ...
webserver abschalten!

$ git checkout master
$ git pull # oder git fetch und danach ein stable release tag auswählen (s.o.)
$ git checkout meine_eigenen_änderungen
$ git rebase master

Zunächst wird der Branch zurückgespult, um Ihre Änderungen
darauf neu anzuwenden ...
Wende an: juhu tolle änderungen
$ service apache2 restart # webserver starten!

2.4.2. Installation über die Github Website
Der aktuelle Stable-Release, bzw. beta Release wird bei github gehostet und kann hier3 heruntergeladen werden.

Das aktuelleste kivitendo ERP-Archiv (kivitendo-erp-*.tgz) wird dann im Dokumentenverzeichnis des Webservers
(z.B. /var/www/html/, /srv/www/htdocs oder /var/www/) entpackt:

cd /var/www
tar xvzf kivitendo-erp-*.tgz

Wechseln Sie in das entpackte Verzeichnis:

cd kivitendo-erp

Alternativ können Sie auch einen Alias in der Webserverkonfiguration benutzen, um auf das tatsächliche Installationsverzeich-
nis zu verweisen.

2.4.3. Restliche Verzeichnisse ändern und bearbeiten
Die folgenden Schritte müssen nach der Installation mittels git oder der Github Website angewendet werden.

Bei einer Neuinstallation von Version 3.1.0 oder später muss das WebDAV Verzeichnis derzeit manuell angelegt werden:

mkdir webdav

Die Verzeichnisse users, spool und webdav müssen für den Benutzer beschreibbar sein, unter dem der Webserver läuft.
Die restlichen Dateien müssen für diesen Benutzer lesbar sein. Die Benutzer- und Gruppennamen sind bei verschiedenen Dis-
tributionen unterschiedlich (z.B. bei Debian/Ubuntu www-data, bei Fedora apache oder bei openSUSE wwwrun).

Der folgende Befehl ändert den Besitzer für die oben genannten Verzeichnisse auf einem Debian/Ubuntu-System:

chown -R www-data users spool webdav

Weiterhin muss der Webserver-Benutzer in den Verzeichnissen templates und users Unterverzeichnisse für jeden neuen
Benutzer anlegen dürfen, der in kivitendo angelegt wird:

3 https://github.com/kivitendo/kivitendo-erp/releases

https://github.com/kivitendo/kivitendo-erp/releases
https://github.com/kivitendo/kivitendo-erp/releases

Installation und Grundkonfiguration

11

chown www-data templates

2.5. kivitendo-Konfigurationsdatei

2.5.1. Einführung

In kivitendo gibt es nur noch eine Konfigurationsdatei, die benötigt wird: config/kivitendo.conf (kurz: "die Haupt-
konfigurationsdatei"). Diese muss bei der Erstinstallation von kivitendo bzw. der Migration von älteren Versionen angelegt
werden.

Als Vorlage dient die Datei config/kivitendo.conf.default (kurz: "die Default-Datei"):

$ cp config/kivitendo.conf.default config/kivitendo.conf

Die Default-Datei wird immer zuerst eingelesen. Werte, die in der Hauptkonfigurationsdatei stehen, überschreiben die Wer-
te aus der Default-Datei. Die Hauptkonfigurationsdatei muss also nur die Abschnitte und Werte enthalten, die von denen der
Default-Datei abweichen.

Anmerkung

Vor der Umbenennung in kivitendo hieß diese Datei noch config/lx_office.conf. Aus Gründen der
Kompatibilität wird diese Datei eingelesen, sofern die Datei config/kivitendo.conf nicht existiert.

Diese Hauptkonfigurationsdatei ist dann eine installationsspezifische Datei, d.h. sie enthält bspw. lokale Passwörter und wird
auch nicht im Versionsmanagement (git) verwaltet.

Die Konfiguration ist ferner serverabhängig, d.h. für alle Mandaten, bzw. Datenbanken gleich.

2.5.2. Abschnitte und Parameter

Die Konfigurationsdatei besteht aus mehreren Teilen, die entsprechend kommentiert sind:

• authentication (siehe Abschnitt "Abschnitt 2.10, „Benutzerauthentifizierung und Administratorpasswort“ [23]" in
diesem Kapitel)

• authentication/database

• authentication/ldap

• system

• paths

• mail_delivery (siehe Abschnitt "E-Mail-Versand über einen SMTP-Server [28])

• imap_client (siehe Abschnitt "E-Mails in kivitendo importieren [29])

• sent_emails_in_imap (siehe Abschnitt "Versendete E-Mails über IMAP exportieren [28])

• applications

• environment

• print_templates

• task_server

• periodic_invoices

Installation und Grundkonfiguration

12

• self_tests

• console

• testing

• testing/database

• debug

Die üblicherweise wichtigsten Parameter, die am Anfang einzustellen oder zu kontrollieren sind, sind:

[authentication]
admin_password = geheim

[authentication/database]
host = localhost
port = 5432
db = kivitendo_auth
user = postgres
password =

[system]
default_manager = german

Für kivitendo Installationen in der Schweiz sollte hier german durch swiss ersetzt werden.

Die Einstellung default_manager = swiss bewirkt:

• Beim Erstellen einer neuen Datenbank in der kivitendo Administration werden automatisch die Standard-Werte für die
Schweiz voreingestellt: Währung CHF, 5er-Rundung, Schweizer KMU-Kontenplan, Sollversteuerung, Aufwandsmethode,
Bilanzierung (die Werte können aber manuell angepasst werden).

• Einstellen der Standardkonten für Rundungserträge und -aufwendungen (unter Mandantenkonfiguration → Standardkonten
veränderbar)

• das verwendete Zahlenformat wird auf 1'000.00 eingestellt (unter Programm → Benutzereinstellungen veränderbar)

• DATEV-Automatik und UStVA werden nicht angezeigt, Erfolgsrechnung ersetzt GUV (unter Mandantenkonfiguration →
Features veränderbar)

Nutzt man wiederkehrende Rechnungen, kann man unter [periodic_invoices] den Login eines Benutzers angeben, der
nach Erstellung der Rechnungen eine entsprechende E-Mail mit Informationen über die erstellten Rechnungen bekommt.

kivitendo bringt eine eigene Komponente zur zeitgesteuerten Ausführung bestimmter Aufgaben mit, den Task-Server. Er wird
u.a. für Features wie die wiederkehrenden Rechnungen benötigt, erledigt aber auch andere erforderliche Aufgaben und muss
daher in Betrieb genommen werden. Seine Einrichtung wird im Abschnitt Task-Server genauer beschrieben.

Für Entwickler finden sich unter [debug] wichtige Funktionen, um die Fehlersuche zu erleichtern.

2.5.3. Versionen vor 2.6.3

In älteren kivitendo Versionen gab es im Verzeichnis config die Dateien authentication.pl und lx-erp.conf, die
jeweils Perl-Dateien waren. Es gab auch die Möglichkeit, eine lokale Version der Konfigurationsdatei zu erstellen (lx-erp-
local.conf). Dies ist ab 2.6.3 nicht mehr möglich, aber auch nicht mehr nötig.

Beim Update von einer kivitendo-Version vor 2.6.3 auf 2.6.3 oder jünger müssen die Einstellungen aus den alten Konfigurati-
onsdateien manuell übertragen und die alten Konfigurationsdateien anschließend gelöscht oder verschoben werden. Ansonsten
zeigt kivitendo eine entsprechende Fehlermeldung an.

Installation und Grundkonfiguration

13

2.6. Anpassung der PostgreSQL-Konfiguration
PostgreSQL muss auf verschiedene Weisen angepasst werden.

Dies variert je nach eingesetzter Distribution, da distributionsabhängig unterschiedliche Strategien beim Upgrade der Postgres
Version eingesetzt werden. Als Hinweis einige Links zu den drei Distribution (Stand Dezember 2018):

• Fedora (Postgres-Installation unter Fedora)4

• Ubuntu (Infos für Postgres für die aktuelle LTS Version)5

• OpenSuSE (aktuell nur bis Version OpenSuSE 13 verifiziert)6

2.6.1. Zeichensätze/die Verwendung von Unicode/UTF-8
kivitendo setzt zwingend voraus, dass die Datenbank Unicode/UTF-8 als Encoding einsetzt. Bei aktuellen Serverinstallationen
braucht man hier meist nicht einzugreifen.

Das Encoding des Datenbankservers kann überprüft werden. Ist das Encoding der Datenbank "template1" "Unicode" bzw.
"UTF-8", so braucht man nichts weiteres diesbezüglich unternehmen. Zum Testen:

su postgres
echo '\l' | psql
exit

Andernfalls ist es notwendig, einen neuen Datenbankcluster mit Unicode-Encoding anzulegen und diesen zu verwenden. Unter
Debian und Ubuntu kann dies z.B. für PostgreSQL 9.3 mit dem folgenden Befehl getan werden:

pg_createcluster --locale=de_DE.UTF-8 --encoding=UTF-8 9.3 clustername

Die Datenbankversionsnummer muss an die tatsächlich verwendete Versionsnummer angepasst werden.

Unter anderen Distributionen gibt es ähnliche Methoden.

Das Encoding einer Datenbank kann in psql mit \l geprüft werden.

2.6.2. Änderungen an Konfigurationsdateien
In der Datei postgresql.conf, die je nach Distribution in verschiedenen Verzeichnissen liegen kann (z.B. /var/lib/
pgsql/data/ oder /etc/postgresql/), muss sichergestellt werden, dass TCP/IP-Verbindungen aktiviert sind. Das Ver-
halten wird über den Parameter listen_address gesteuert. Laufen PostgreSQL und kivitendo auf demselben Rechner, so
kann dort der Wert localhost verwendet werden. Andernfalls müssen Datenbankverbindungen auch von anderen Rechnern
aus zugelassen werden, was mit dem Wert * geschieht.

In der Datei pg_hba.conf, die im gleichen Verzeichnis wie die postgresql.conf zu finden sein sollte, müssen die
Berechtigungen für den Zugriff geändert werden. Hier gibt es mehrere Möglichkeiten. Sinnvoll ist es nur die nötigen Verbin-
dungen immer zuzulassen, für eine lokal laufende Datenbank zum Beispiel:

local all kivitendo password
host all kivitendo 127.0.0.1 255.255.255.255 scram-sha-256

2.6.3. Erweiterung für servergespeicherte Prozeduren
In der Datenbank template1 muss die Unterstützung für servergespeicherte Prozeduren eingerichet werden. Melden Sie sich
dafür als Benutzer “postgres” an der Datenbank an:

4 https://fedoraproject.org/wiki/PostgreSQL
5 https://help.ubuntu.com/lts/serverguide/postgresql.html
6 https://de.opensuse.org/PostgreSQL

https://fedoraproject.org/wiki/PostgreSQL
https://help.ubuntu.com/lts/serverguide/postgresql.html
https://de.opensuse.org/PostgreSQL
https://fedoraproject.org/wiki/PostgreSQL
https://help.ubuntu.com/lts/serverguide/postgresql.html
https://de.opensuse.org/PostgreSQL

Installation und Grundkonfiguration

14

su - postgres
psql template1

führen Sie die folgenden Kommandos aus:

CREATE EXTENSION IF NOT EXISTS plpgsql;
\q

Anmerkung

CREATE EXTENSION ist seit Version 9.1 die bevorzugte Syntax um die Sprache plpgsql anzulegen. In die-
sen Versionen ist die Extension meist auch schon vorhanden. Sollten Sie eine ältere Version von Postgres haben,
benutzen Sie stattdessen den folgenden Befehl.

CREATE LANGUAGE 'plpgsql';
\q

2.6.4. Erweiterung für Trigram Prozeduren

Ab Version 3.5.1 wird die Trigram-Index-Erweiterung benötigt. Diese wird mit dem SQL-Updatescript sql/Pg-upgrade2/
trigram_extension.sql und Datenbank-Super-Benutzer Rechten automatisch installiert. Dazu braucht der DatenbankSuperbe-
nutzer "postgres" ein Passwort.

su - postgres
psql
\password postgres

Eingabe Passwort
\q

Benutzername Postgres und Passwort können jetzt beim Anlegen einer Datenbank bzw. bei Updatescripten, die Superuser-
Rechte benötigen, eingegeben werden.

Anmerkung

pg_trgm ist je nach Distribution nicht im Standard-Paket von Postgres enthalten. Ein

select * from pg_available_extensions where name ='pg_trgm';

in template1 sollte entsprechend erfolgreich sein. Andernfalls muss das Paket nachinstalliert werden, bspw. bei
debian/ubuntu

apt install postgresql-contrib

2.6.5. Datenbankbenutzer anlegen

Wenn Sie nicht den Datenbanksuperuser “postgres” zum Zugriff benutzen wollen, so sollten Sie bei PostgreSQL einen neuen
Benutzer anlegen. Ein Beispiel, wie Sie einen neuen Benutzer anlegen können:

Die Frage, ob der neue User Superuser sein soll, können Sie mit nein beantworten, genauso ist die Berechtigung neue User
(Roles) zu generieren nicht nötig.

su - postgres
createuser -d -P kivitendo
exit

Wenn Sie später einen Datenbankzugriff konfigurieren, verändern Sie den evtl. voreingestellten Benutzer “postgres” auf “kivi-
tendo” bzw. den hier gewählten Benutzernamen.

Installation und Grundkonfiguration

15

2.7. Webserver-Konfiguration

2.7.1. Grundkonfiguration mittels CGI

Anmerkung
Für einen deutlichen Performanceschub sorgt die Ausführung mittels FastCGI/FCGI. Die Einrichtung wird aus-
führlich im Abschnitt Konfiguration für FastCGI/FCGI [15] beschrieben.

Der Zugriff auf das Programmverzeichnis muss in der Apache Webserverkonfigurationsdatei 000-default.conf einge-
stellt werden. Fügen Sie den folgenden Abschnitt dieser Datei oder einer anderen Datei hinzu, die beim Starten des Webservers
eingelesen wird:

AliasMatch ^/kivitendo-erp/[^/]+\.pl /var/www/kivitendo-erp/dispatcher.pl
Alias /kivitendo-erp/ /var/www/kivitendo-erp/

<Directory /var/www/kivitendo-erp>
 AddHandler cgi-script .pl
 Options ExecCGI Includes FollowSymlinks
</Directory>

<Directory /var/www/kivitendo-erp/users>
 Require all granted
</Directory>

Ersetzen Sie dabei die Pfade durch diejenigen, in die Sie vorher das kivitendo-Archiv entpacket haben.

Anmerkung
Vor den einzelnen Optionen muss bei einigen Distributionen ein Plus ‘+’ gesetzt werden.

Bei einigen Distribution (Ubuntu ab 14.04, Debian ab 8.2) muss noch explizit das cgi-Modul mittels

a2enmod cgi

aktiviert werden.

Auf einigen Webservern werden manchmal die Grafiken und Style-Sheets nicht ausgeliefert. In solchen Fällen hat es oft gehol-
fen, die folgende Option in die Konfiguration aufzunehmen:

EnableSendfile Off

2.7.2. Konfiguration für FastCGI/FCGI

2.7.2.1. Was ist FastCGI?

Direkt aus Wikipedia7 kopiert:

[FastCGI ist ein Standard für die Einbindung externer Software zur Generierung dynamischer Webseiten in einem Webserver.
FastCGI ist vergleichbar zum Common Gateway Interface (CGI), wurde jedoch entwickelt, um dessen Performance-Probleme
zu umgehen.]

2.7.2.2. Warum FastCGI?

Perl Programme (wie kivitendo eines ist) werden nicht statisch kompiliert. Stattdessen werden die Quelldateien bei jedem Start
übersetzt, was bei kurzen Laufzeiten einen Großteil der Laufzeit ausmacht. Während SQL Ledger einen Großteil der Funk-
tionalität in einzelne Module kapselt, um immer nur einen kleinen Teil laden zu müssen, ist die Funktionalität von kivitendo

7 http://de.wikipedia.org/wiki/FastCGI

http://de.wikipedia.org/wiki/FastCGI
http://de.wikipedia.org/wiki/FastCGI

Installation und Grundkonfiguration

16

soweit gewachsen, dass immer mehr Module auf den Rest des Programms zugreifen. Zusätzlich benutzen wir umfangreiche
Bibliotheken um Funktionaltät nicht selber entwickeln zu müssen, die zusätzliche Ladezeit kosten. All dies führt dazu dass ein
kivitendo Aufruf der Kernmasken mittlerweile deutlich länger dauert als früher, und dass davon 90% für das Laden der Module
verwendet wird.

Mit FastCGI werden nun die Module einmal geladen, und danach wird nur die eigentliche Programmlogik ausgeführt.

2.7.2.3. Getestete Kombinationen aus Webservern und Plugin

Folgende Kombinationen sind getestet:

• Apache 2.4.7 (Ubuntu 14.04.2 LTS) und mod_fcgid.

• Apache 2.4.18 (Ubuntu 16.04 LTS) und mod_fcgid

• Apache 2.4.29 (Ubuntu 18.04 LTS) und mod_fcgid

• Apache 2.4.41 (Ubuntu 20.04 LTS) und mod_fcgid

Als Perl Backend wird das Modul FCGI.pm verwendet.

Warnung
FCGI-Versionen ab 0.69 und bis zu 0.71 inklusive sind extrem strict in der Behandlung von Unicode, und verwei-
gern bestimmte Eingaben von kivitendo. Falls es Probleme mit Umlauten in Ihrer Installation gibt, muss zwin-
gend Version 0.68 oder aber Version 0.72 und neuer eingesetzt werden.

Mit CPAN8 lässt sie sich die Vorgängerversion wie folgt installieren:

force install M/MS/MSTROUT/FCGI-0.68.tar.gz

2.7.2.4. Konfiguration des Webservers

Bevor Sie versuchen, eine kivitendo Installation unter FCGI laufen zu lassen, empfiehlt es sich die Installation ersteinmal
unter CGI aufzusetzen. FCGI macht es nicht einfach Fehler zu debuggen die beim ersten aufsetzen auftreten können. Sollte die
Installation schon funktionieren, lesen Sie weiter.

Zuerst muss das FastCGI-Modul aktiviert werden. Dies kann unter Debian/Ubuntu z.B. mit folgendem Befehl geschehen:

a2enmod fcgid

Die Konfiguration für die Verwendung von kivitendo mit FastCGI erfolgt durch Anpassung der vorhandenen Alias- und
Directory-Direktiven. Dabei wird zwischen dem Installationspfad von kivitendo im Dateisystem ("/path/to/kivi-
tendo-erp") und der URL unterschieden, unter der kivitendo im Webbrowser erreichbar ist ("/url/for/kiviten-
do-erp").

Folgender Konfigurationsschnipsel funktioniert mit mod_fastcgi:

AliasMatch ^/url/for/kivitendo-erp/[^/]+\.pl /path/to/kivitendo-erp/dispatcher.fcgi
Alias /url/for/kivitendo-erp/ /path/to/kivitendo-erp/

<Directory /path/to/kivitendo-erp>
 AllowOverride All
 Options ExecCGI Includes FollowSymlinks
 Require all granted
</Directory>

<DirectoryMatch /path/to/kivitendo-erp/users>
Require all denied
</DirectoryMatch>

8 http://www.cpan.org

http://www.cpan.org
http://www.cpan.org

Installation und Grundkonfiguration

17

Warnung

Wer einen älteren Apache als Version 2.4 im Einsatz hat, muss entsprechend die Syntax der Directorydirektiven
verändert. Statt

Require all granted

muß man Folgendes einstellen:

 Order Allow,Deny
 Allow from All

und statt

Require all denied

muss stehen:

 Order Deny,Allow
 Deny from All

Seit mod_fcgid-Version 2.3.6 gelten sehr kleine Grenzen für die maximale Größe eines Requests. Diese sollte wie folgt hoch-
gesetzt werden:

FcgidMaxRequestLen 10485760

Das Ganze sollte dann so aussehen:

AddHandler fcgid-script .fpl
AliasMatch ^/url/for/kivitendo-erp/[^/]+\.pl /path/to/kivitendo-erp/dispatcher.fpl
Alias /url/for/kivitendo-erp/ /path/to/kivitendo-erp/
FcgidMaxRequestLen 10485760

<Directory /path/to/kivitendo-erp>
 AllowOverride All
 Options ExecCGI Includes FollowSymlinks
 Require all granted
</Directory>

<DirectoryMatch /path/to/kivitendo-erp/users>
Require all denied
</DirectoryMatch>

Hierdurch wird nur ein zentraler Dispatcher gestartet. Alle Zugriffe auf die einzelnen Scripte werden auf diesen umgeleitet.
Dadurch, dass zur Laufzeit öfter mal Scripte neu geladen werden, gibt es hier kleine Performance-Einbußen.

Es ist möglich, die gleiche kivitendo Version parallel unter CGI und FastCGI zu betreiben. Dafür bleiben die Directorydirekti-
ven wie oben beschrieben, die URLs werden aber umgeleitet:

Zugriff über CGI
Alias /url/for/kivitendo-erp /path/to/kivitendo-erp

Zugriff mit mod_fcgid:
AliasMatch ^/url/for/kivitendo-erp-fcgid/[^/]+\.pl /path/to/kivitendo-erp/dispatcher.fpl
Alias /url/for/kivitendo-erp-fcgid/ /path/to/kivitendo-erp/

Dann ist unter /url/for/kivitendo-erp/ die normale Version erreichbar, und unter /url/for/kivitendo-erp-
fcgid/ die FastCGI-Version.

Installation und Grundkonfiguration

18

2.7.3. Authentifizierung mittels HTTP Basic Authenticati-
on
Kivitendo unterstützt, dass Benutzerauthentifizierung über den Webserver mittels des »Basic«-HTTP-Authentifizierungs-Sche-
ma erfolgt (siehe RFC 76179). Dazu ist es aber nötig, dass der dabei vom Client mitgeschickte Header Authorization
vom Webserver an Kivitendo über die Umgebungsvariable HTTP_AUTHORIZATION weitergegeben wird, was standardmäßig
nicht der Fall ist. Für Apache kann dies über die folgende Konfigurationsoption aktiviert werden:

SetEnvIf Authorization "(.*)" HTTP_AUTHORIZATION=$1

2.7.4. Aktivierung von mod_rewrite/directory_match für
git basierte Installationen
Aufgrund von aktuellen (Mitte 2020) Sicherheitswarnungen für git basierte Webanwendungen ist die mitausgelieferte .htaccess
restriktiver geworden und verhindert somit das Auslesen von git basierten Daten. Für debian/ubuntu muss das Modul
mod_rewrite einmalig so aktiviert werden:

a2enmod rewrite

Alternativ und für Installationen ohne Apache ist folgender Artikel interessant: git-lücke10. Anstelle des dort beschriebenen
DirectoryMatch für Apache2 würden wir etwas weitergehend auch noch das Verzeichnis config miteinbeziehen sowie ferner
auch die Möglichkeit nicht ausschließen, dass es in Unterverzeichnissen auch noch .git Repositories geben kann. Die Empfeh-
lung für Apache 2.4 wäre damit:

 <DirectoryMatch "/(\.git|config)/">
 Require all denied
 </DirectoryMatch>

2.7.5. Weitergehende Konfiguration
Für einen deutlichen Sicherheitsmehrwert sorgt die Ausführung von kivitendo nur über https-verschlüsselten Verbindungen,
sowie weiteren Zusatzmassnahmen, wie beispielsweise Basic Authenticate. Die Konfigurationsmöglichkeiten sprengen aller-
dings den Rahmen dieser Anleitung, hier ein Hinweis auf einen entsprechenden Foreneintrag (Stand Sept. 2015)11 und einen
aktuellen (Stand Mai 2017) SSL-Konfigurations-Generator12.

2.7.6. Aktivierung von Apache2 modsecurity
Aufgrund des OpenSource Charakters ist kivitendo nicht "out of the box" sicher. Organisatorisch empfehlen wir hier die enge
Zusammenarbeit mit einem kivitendo Partner der auch in der Lage ist weiterführende Fragen in Bezug auf Datenschutz und
Datensicherheit zu beantworten. Unabhängig davon empfehlen wir im Webserver Bereich die Aktivierung und Konfiguration
des Moduls modsecurity für den Apache2, damit XSS und SQL-Injections verhindert werden.

Als Idee hierfür sei dieser Blog-Eintrag genannt: Test Apache2 modsecurity for SQL Injection13.

2.8. Der Task-Server
Der Task-Server ist ein Prozess, der im Hintergrund läuft, in regelmäßigen Abständen nach abzuarbeitenden Aufgaben sucht
und diese zu festgelegten Zeitpunkten abarbeitet (ähnlich wie Cron). Dieser Prozess wird u.a. für die Erzeugung der wieder-
kehrenden Rechnungen und weitere essenzielle Aufgaben benutzt.

9 https://tools.ietf.org/html/rfc7617
10 https://www.cyberscan.io/blog/git-luecke
11 http://redmine.kivitendo-premium.de/boards/1/topics/142
12 https://mozilla.github.io/server-side-tls/ssl-config-generator/
13 https://doxsec.wordpress.com/2017/06/11/using-modsecurity-web-application-firewall-to-prevent-sql-injection-and-xss-using-blocking-rules/

https://tools.ietf.org/html/rfc7617
https://www.cyberscan.io/blog/git-luecke
http://redmine.kivitendo-premium.de/boards/1/topics/142
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://doxsec.wordpress.com/2017/06/11/using-modsecurity-web-application-firewall-to-prevent-sql-injection-and-xss-using-blocking-rules/
https://tools.ietf.org/html/rfc7617
https://www.cyberscan.io/blog/git-luecke
http://redmine.kivitendo-premium.de/boards/1/topics/142
https://mozilla.github.io/server-side-tls/ssl-config-generator/
https://doxsec.wordpress.com/2017/06/11/using-modsecurity-web-application-firewall-to-prevent-sql-injection-and-xss-using-blocking-rules/

Installation und Grundkonfiguration

19

Der Task-Server muss einmalig global in der Konfigurationsdatei konfiguriert werden. Danach wird er für jeden Mandanten,
für den er laufen soll, in der Adminsitrationsmaske eingeschaltet.

Beachten Sie, dass der Task-Server in den Boot-Vorgang Ihres Servers integriert werden muss, damit er automatisch gestartet
wird. Dies kann kivitendo nicht für Sie erledigen.

Da der Task-Server als Perlscript läuft, wird Arbeitsspeicher, der einmal benötigt wurde, nicht mehr an das Betriebssystem
zurückgegeben, solange der Task-Server läuft. Dies kann dazu führen, dass ein länger laufender Task-Server mit der Zeit
immer mehr Arbeitsspeicher für sich beansprucht. Es ist deshalb sinnvoll, dass der Task-Server in regelmässigen Abständen
neu gestartet wird. Allerdings berücksichtigt der Task-Server ein Memory-Limit, wenn dieses in der Konfigurationsdatei ange-
geben ist. Bei Überschreiten dieses Limits beendet sich der Task-Server. Sofern der Task-Server als systemd-Service mit dem
mitgelieferten Skript eingerichtet wurde, startet dieser danach automatisch erneut.

2.8.1. Verfügbare und notwendige Konfigurationsoptio-
nen
Die Konfiguration erfolgt über den Abschnitt [task_server] in der Datei config/kivitendo.conf. Die dort verfüg-
baren Optionen sind:

run_as
Wird der Server vom Systembenutzer root gestartet, so wechselt er auf den mit run_as angegebenen Systembenutzer.
Der Systembenutzer muss dieselben Lese- und Schreibrechte haben, wie auch der Webserverbenutzer (siehe see Manuel-
le Installation des Programmpaketes [9]). Daher ist es erforderlich, hier denselben Systembenutzer einzutragen, unter
dem auch der Webserver läuft.

debug
Schaltet Debug-Informationen an und aus.

2.8.2. Konfiguration der Mandanten für den Task-Server
Ist der Task-Server grundlegend konfiguriert, so muss anschließend jeder Mandant, für den der Task-Server laufen soll, ein-
malig konfiguriert werden. Dazu kann in der Maske zum Bearbeiten von Mandanten im Administrationsbereich eine kiviten-
do-Benutzerkennung ausgewählt werden, unter der der Task-Server seine Arbeit verrichtet.

Ist in dieser Einstellung keine Benutzerkennung ausgewählt, so wird der Task-Server für diesen Mandanten keine Aufgaben
ausführen.

2.8.3. Automatisches Starten des Task-Servers beim Boo-
ten
Der Task-Server verhält sich von seinen Optionen her wie ein reguläres SystemV-kompatibles Boot-Script. Außerdem wech-
selt er beim Starten automatisch in das kivitendo-Installationsverzeichnis.

Deshalb ist es möglich, ihn durch Setzen eines symbolischen Links aus einem der Runlevel-Verzeichnisse heraus in den Boot-
Prozess einzubinden. Da das bei neueren Linux-Distributionen aber nicht zwangsläufig funktioniert, werden auch Start-Scripte
mitgeliefert, die anstelle eines symbolischen Links verwendet werden können.

2.8.3.1. SystemV-basierende Systeme (z.B. ältere Debian, ältere
openSUSE, ältere Fedora)

Kopieren Sie die Datei scripts/boot/system-v/kivitendo-task-server nach /etc/init.d/kiviten-
do-task-server. Passen Sie in der kopierten Datei den Pfad zum Task-Server an (Zeile DAEMON=....). Binden Sie das
Script in den Boot-Prozess ein. Dies ist distributionsabhängig:

• Debian-basierende Systeme:

update-rc.d kivitendo-task-server defaults

Installation und Grundkonfiguration

20

insserv kivitendo-task-server

• Ältere openSUSE und ältere Fedora:

chkconfig --add kivitendo-task-server

Danach kann der Task-Server mit dem folgenden Befehl gestartet werden:

/etc/init.d/kivitendo-task-server start

2.8.3.2. Upstart-basierende Systeme (z.B. Ubuntu bis 14.04)

Kopieren Sie die Datei scripts/boot/upstart/kivitendo-task-server.conf nach /etc/init/kiviten-
do-task-server.conf. Passen Sie in der kopierten Datei den Pfad zum Task-Server an (Zeile exec).

Danach kann der Task-Server mit dem folgenden Befehl gestartet werden:

service kivitendo-task-server start

2.8.3.3. systemd-basierende Systeme (z.B. neure openSUSE, neuere
Fedora, neuere Ubuntu und neuere Debians)

Kopieren Sie die Datei scripts/boot/systemd/kivitendo-task-server.service nach /etc/sys-
temd/system/. Passen Sie in der kopierten Datei den Pfad zum Task-Server an (Zeilen ExecStart=.... und ExecS-
top=...).

Machen Sie anschließend das Script systemd bekannt, und binden Sie es in den Boot-Prozess ein. Dazu führen Sie die folgen-
den Befehl aus:

systemctl daemon-reload
systemctl enable kivitendo-task-server.service

Wenn Sie den Task-Server jetzt sofort starten möchten, anstatt den Server neu zu starten, so können Sie das mit dem folgenden
Befehl tun:

systemctl start kivitendo-task-server.service

Ein so eingerichteter Task-Server startet nach Beendigung automatisch erneut. Das betrifft eine Beendigung über die Oberflä-
che, eine Beendingung über die Prozesskontrolle und eine Beendigung bei Überschreiten des Memory-Limits. Soll der Task-
Server nicht erneut starten, so können Sie ihn mit folgendem Befehl stoppen:

systemctl stop kivitendo-task-server.service

2.8.4. Wie der Task-Server gestartet und beendet wird
Der Task-Server wird wie folgt kontrolliert:

./scripts/task_server.pl Befehl

Befehl ist dabei eine der folgenden Optionen:

• start startet eine neue Instanz des Task-Servers. Die Prozess-ID wird innerhalb des users-Verzeichnisses abgelegt.

• stop beendet einen laufenden Task-Server.

• restart beendet und startet ihn neu.

• status berichtet, ob der Task-Server läuft.

Der Task-Server wechselt beim Starten automatisch in das kivitendo-Installationsverzeichnis.

Installation und Grundkonfiguration

21

Dieselben Optionen können auch für die SystemV-basierenden Runlevel-Scripte benutzt werden (siehe oben).

Wurde der Task-Server als systemd-Service eingerichtet (s.o.), so startet dieser nach Beendigung automatisch erneut.

2.9. Konfiguration der Hintergrund-Jobs
Hintergrund-Jobs werden über System -> Hintergrund-Jobs und Task-Server -> Aktuelle Hintergrund-Jobs anzeigen -> Akti-
ons-Knopf 'erfassen' angelegt.

Nachdem wir über das Menü dort angelangt sind, legen wir hier unseren Hintergrund-Jobs an:

• Aktiv: Hier ein 'Ja' auswählen

• Ausführungsart: 'wiederholte Ausführung' auswählen

• Paketname: Hintergrundjob auswählen

• Ausführungszeitplan: Hier entsprechend Werte wie in der crontab eingeben.

Syntax:

* * * * *
#
#
Wochentag (0-7, Sonntag ist 0 oder 7)
Monat (1-12)
Tag (1-31)
Stunde (0-23)
############# Minute (0-59)

Die Sterne können folgende Werte haben:

1 2 3 4 5

1 = Minute (0-59)
2 = Stunde (0-23)
3 = Tag (0-31)
4 = Monat (1-12)
5 = Wochentag (0-7, Sonntag ist 0 oder 7)

Um die Ausführung auf eine Minute vor den Jahreswechsel zu setzen, müssen die folgenden Werte eingetragen werden:

59 23 31 12 *

• Daten:In diesem Feld können optionale Parameter für den Hintergrund im YAML-Format gesetzt werden.

2.9.1. SetNumberRange
Der Hintergrund-Job SetNumberRange akzeptiert im Feld Daten zwei Variablen nämlich digit_year sowieso multi-
plier.

digit_year kann zwei Werte haben entweder 2 oder 4, darüber wird gesteuert ob die Jahreszahl zwei oder vierstellig
kodiert wird (für 2019, dann entweder 19 oder 2019). Der Standardwert ist vierstellig.

multiplier ist ein Vielfaches von 10, darüber wird die erste Nummer im Nummernkreis (die Anzahl der Stellen) wie folgt
bestimmt:

multiplier Nummernkreis 2020

Installation und Grundkonfiguration

22

10 -> 20200
100 -> 202000
1000 -> 2020000

Wir gehen jetzt beispielhaft von einer letzten Rechnungsnummer von RE2019456 aus. Demnach sollte ab Januar 2020 die ers-
te Nummer RE2020001 sein. Da der Task auch Präfixe berücksichtigt, kann dies mit folgenden JSON-kodierten Werten umge-
setzt werden:

Daten:

multiplier: 100
digits_year: 4

2.9.2. ImportRecordEmails

Der Hintergrund-Job ImportRecordEmails kann vollständig über das Feld Daten konfiguriert werden. Er benötigt folgen-
de Variablen:

• hostname: Hier wird der E-Mail-Server (IMAP) eingetragen

• username: Benutzername, für den IMAP-Server (häufig die E-Mail-Adresse)

• password: Passwort des Benutzers

• folder: Hier wird der Ordner eingetragen, aus dem die E-Mails importert werden sollen, bspw. 'INBOX'

• port: Port am E-Mail-Server. Default ist 993

• ssl: Gibt an ob SSL verwendet werden soll. Default: 1

Optional können außerdem folgende Variablen verwendet werden:

• email_import_ids_to_delete: Hier können IDs von Importen eingetragen werden, deren E-Mails aus dem E-
Mail-Journal gelöscht werden sollen.

• process_imported_emails: Wenn nach dem Import noch weitere Verarbeitung der angehangenen Dokumente
erfolgen soll, müssen hier die jeweiligen Schritte eingetragen werden. Aktuell ist es möglich, dass angehangene ZUG-
FeRD-Rechnung direkt verbucht und mit der E-Mail verknüpft werden. Dazu muss hier 'zugferd' eingetragen werden.

• processed_imap_flag: Das hier eingetragenen Flag wird nach dem Verarbeiten in der E-Mail auf den IMAP-Server
gesetzt.

• not_processed_imap_flag: Dieses Flag wird gesetzt, wenn die E-Mail nicht verarbeitet werden konnte.

• record_type: Einträge im E-Mail-Journal können direkt einem Belegtypen zugeordnet werden. Wenn alle E-Mails, die
mit einem Hintergrundjob importiert werden, den gleichen Belegtypen haben, kann man diesen hier festlegen und alle Ein-
träge im E-Mail-Journal werden entsprechend zugeordnet. Für Eingangsrechnungen kann man hier bspw. 'ap_transaction'
setzen.

Wie die IMAP Flags von den jeweiligen Clients angezeigt und eingerichtet werden, ist aktuell im Thunderbird (Version 115.8.0
und Version 115.8.1) und SoGo (Version 5.9.1) getestet:

In Thunderbird heißen die Flags Schlagwörter. In unseren beiden Testfälle, war das Verfahren unterschiedlich:

Thunderbird 115.8.0: Sie werden durchnummeriert mit dem Prefix "$label". Über die Einstellungen kann man Schlagwort und
Farbe für den jeweiligen Tag setzen und berabeiten. Um die vordefenierten Tags in Thunderbird zu nutzen kann man $label1
- $label5 nutzen. Eigene Labels werden dann von thunderbird automatisch hochgezählt. Um das korrekte Tag für ein Label zu
finden oder auch selbst ein Tag mit einer selbst gewählten Zahl zu definieren kann man in den Einstellunge ganz am Ende über
den Button Konfiguration berabeiten... die Werte in der Kofiguration einsehen, ändern und berabeiten. Hier muss
man nach mailnews.tags suchen.

Installation und Grundkonfiguration

23

Thunderbird 115.8.1: Einstellungen -> Schlagwörter -> hinzufügen. Das Schlagwort wird mit dem 'Label'
'name_mit_unterstrichen' zu Verfügung gestellt. Was wirklich passiert kann man dann ganz unten in den Einstellungen unter
'Konfiguration bearbeiten' und einer darauf folgenden Filtersuche nach 'mailnews.tag' erkennen.

In SoGo kann man unter Einstellungen -> Mail -> Labels beliebige Label mit $ als Prefix anlegen und Namen und Farbe
zuweisen.

Eine beispielhafte Konfiguration im YAML-Format für das Feld 'Daten' im Hintergrund-Job könnte bspw. so aussehen:

record_type: ap_transaction
folder: INBOX/Eingangsrechnung
processed_imap_flag: zugferd_verarbeitet
not_processed_imap_flag: zugferd_geht_net
process_imported_emails: zugferd
hostname: www.meine-domaene.de
username: alpha39@meine-domaene.de
password: supipass8

2.10. Benutzerauthentifizierung und Adminis-
tratorpasswort
Informationen über die Einrichtung der Benutzerauthentifizierung, über die Verwaltung von Gruppen und weitere Einstellun-
gen

2.10.1. Grundlagen zur Benutzerauthentifizierung
kivitendo verwaltet die Benutzerinformationen in einer Datenbank, die im folgenden “Authentifizierungsdatenbank” genannt
wird. Für jeden Benutzer kann dort eine eigene Datenbank für die eigentlichen Finanzdaten hinterlegt sein. Diese beiden
Datenbanken können, müssen aber nicht unterschiedlich sein.

Im einfachsten Fall gibt es für kivitendo nur eine einzige Datenbank, in der sowohl die Benutzerinformationen als auch die
Daten abgelegt werden.

Zusätzlich ermöglicht es kivitendo, dass die Benutzerpasswörter gegen die Authentifizierungsdatenbank oder gegen einen oder
mehrere LDAP-Server überprüft werden.

Welche Art der Passwortüberprüfung kivitendo benutzt und wie kivitendo die Authentifizierungsdatenbank errei-
chen kann, wird in der Konfigurationsdatei config/kivitendo.conf festgelegt. Diese muss bei der Installa-
tion und bei einem Upgrade von einer Version vor v2.6.0 angelegt werden. Eine Beispielkonfigurationsdatei con-
fig/kivitendo.conf.default existiert, die als Vorlage benutzt werden kann.

2.10.2. Administratorpasswort
Das Passwort, das zum Zugriff auf das Administrationsinterface von kivitendo benutzt wird, wird ebenfalls in dieser Datei
gespeichert. Es kann auch nur dort und nicht mehr im Administrationsinterface selber geändert werden. Der Parameter dazu
heißt admin_password im Abschnitt [authentication].

2.10.3. Authentifizierungsdatenbank
Die Verbindung zur Authentifizierungsdatenbank wird mit den Parametern in [authentication/database] konfigu-
riert. Hier sind die folgenden Parameter anzugeben:

host
Der Rechnername oder die IP-Adresse des Datenbankservers

Installation und Grundkonfiguration

24

port
Die Portnummer des Datenbankservers, meist 5432

db
Der Name der Authentifizierungsdatenbank

user
Der Benutzername, mit dem sich kivitendo beim Datenbankserver anmeldet (z.B. "postgres")

password
Das Passwort für den Datenbankbenutzer

Die Datenbank muss noch nicht existieren. kivitendo kann sie automatisch anlegen (mehr dazu siehe unten).

2.10.4. Passwortüberprüfung

kivitendo unterstützt Passwortüberprüfung auf zwei Arten: gegen die Authentifizierungsdatenbank und gegen externe LDAP-
oder Active-Directory-Server. Welche davon benutzt wird, regelt der Parameter module im Abschnitt [authenticati-
on].

Dieser Parameter listet die zu verwendenden Authentifizierungsmodule auf. Es muss mindestens ein Modul angegeben werden,
es können aber auch mehrere angegeben werden. Weiterhin ist es möglich, das LDAP-Modul mehrfach zu verwenden und für
jede Verwendung eine unterschiedliche Konfiguration zu nutzen, z.B. um einen Fallback-Server anzugeben, der benutzt wird,
sofern der Hauptserver nicht erreichbar ist.

Sollen die Benutzerpasswörter in der Authentifizierungsdatenbank geprüft werden, so muss der Parameter module das Modul
DB enthalten. Sofern das Modul in der Liste enthalten ist, egal an welcher Position, können sowohl der Administrator als auch
die Benutzer selber ihre Passwörter in kivitendo ändern.

Wenn Passwörter gegen einen oder mehrere externe LDAP- oder Active-Directory-Server geprüft werden, so muss der
Parameter module den Wert LDAP enthalten. In diesem Fall müssen zusätzliche Informationen über den LDAP-Server im
Abschnitt [authentication/ldap] angegeben werden. Das Modul kann auch mehrfach angegeben werden, wobei jedes
Modul eine eigene Konfiguration bekommen sollte. Der Name der Konfiguration wird dabei mit einem Doppelpunkt getrennt
an den Modulnamen angehängt (LDAP:Name-der-Konfiguration). Der entsprechende Abschnitt in der Konfigurations-
datei lautet dann [authentication/Name-der-Konfiguration].

Die verfügbaren Parameter für die LDAP-Konfiguration lauten:

host
Der Rechnername oder die IP-Adresse des LDAP- oder Active-Directory-Servers. Diese Angabe ist zwingend erforder-
lich.

port
Die Portnummer des LDAP-Servers; meist 389.

tls
Wenn Verbindungsverschlüsselung gewünscht ist, so diesen Wert auf ‘1’ setzen, andernfalls auf ‘0’ belassen

verify
Wenn Verbindungsverschlüsselung gewünscht und der Parameter tls gesetzt ist, so gibt dieser Parameter an, ob das Ser-
verzertifikat auf Gültigkeit geprüft wird. Mögliche Werte sind require (Zertifikat wird überprüft und muss gültig sei;
dies ist der Standard) und none (Zertifikat wird nicht überpfüft).

attribute
Das LDAP-Attribut, in dem der Benutzername steht, den der Benutzer eingegeben hat. Für Active-Directory-Server ist
dies meist ‘sAMAccountName’, für andere LDAP-Server hingegen ‘uid’. Diese Angabe ist zwingend erforderlich.

base_dn
Der Abschnitt des LDAP-Baumes, der durchsucht werden soll. Diese Angabe ist zwingend erforderlich.

Installation und Grundkonfiguration

25

filter
Ein optionaler LDAP-Filter. Enthält dieser Filter das Wort <%login%>, so wird dieses durch den vom Benutzer eingege-
benen Benutzernamen ersetzt. Andernfalls wird der LDAP-Baum nach einem Element durchsucht, bei dem das oben ange-
gebene Attribut mit dem Benutzernamen identisch ist.

bind_dn und bind_password
Wenn der LDAP-Server eine Anmeldung erfordert, bevor er durchsucht werden kann (z.B. ist dies bei Active-Directo-
ry-Servern der Fall), so kann diese hier angegeben werden. Für Active-Directory-Server kann als ‘bind_dn’ entweder
eine komplette LDAP-DN wie z.B. ‘cn=Martin Mustermann,cn=Users,dc=firmendomain’ auch nur der vol-
le Name des Benutzers eingegeben werden; in diesem Beispiel also ‘Martin Mustermann’.

timeout
Timeout beim Verbindungsversuch, bevor der Server als nicht erreichbar gilt; Standardwert: 10

2.10.5. Name des Session-Cookies

Sollen auf einem Server mehrere kivitendo-Installationen aufgesetzt werden, so müssen die Namen der Session-Cookies
für alle Installationen unterschiedlich sein. Der Name des Cookies wird mit dem Parameter cookie_name im Abschnitt
[authentication]gesetzt.

Diese Angabe ist optional, wenn nur eine Installation auf dem Server existiert.

2.10.6. Anlegen der Authentifizierungsdatenbank

Nachdem alle Einstellungen in config/kivitendo.conf vorgenommen wurden, muss kivitendo die Authentifizierungs-
datenbank anlegen. Dieses geschieht automatisch, wenn Sie sich im Administrationsmodul anmelden, das unter der folgenden
URL erreichbar sein sollte:

http://localhost/kivitendo-erp/controller.pl?action=Admin/login

2.11. Mandanten-, Benutzer- und Gruppenver-
waltung
Nach der Installation müssen Mandanten, Benutzer, Gruppen und Datenbanken angelegt werden. Dieses geschieht im Admi-
nistrationsmenü, das Sie unter folgender URL finden:

http://localhost/kivitendo-erp/controller.pl?action=Admin/login

Verwenden Sie zur Anmeldung das Passwort, das Sie in der Datei config/kivitendo.conf eingetragen haben.

2.11.1. Zusammenhänge

kivitendo verwaltet zwei Sets von Daten, die je nach Einrichtung in einer oder zwei Datenbanken gespeichert werden.

Das erste Set besteht aus Anmeldeinformationen: welche Benutzer und Mandanten gibt es, welche Gruppen, welche Benut-
zerIn hat Zugriff auf welche Mandanten, und welche Gruppe verfügt über welche Rechte. Diese Informationen werden in der
Authentifizierungsdatenbank gespeichert. Dies ist diejenige Datenbank, deren Verbindungsparameter in der Konfigurationsda-
tei config/kivitendo.conf gespeichert werden.

Das zweite Set besteht aus den eigentlichen Verkehrsdaten eines Mandanten, wie beispielsweise die Stammdaten (Kunden, Lie-
feranten, Waren) und Belege (Angebote, Lieferscheine, Rechnungen). Diese werden in einer Mandantendatenbank gespeichert.
Die Verbindungsinformationen einer solchen Mandantendatenbank werden im Administrationsbereich konfiguriert, indem man
einen Mandanten anlegt und dort die Parameter einträgt. Dabei hat jeder Mandant eine eigene Datenbank.

Aufgrund des Datenbankdesigns ist es für einfache Fälle möglich, die Authentifizierungsdatenbank und eine der Mandantenda-
tenbanken in ein und derselben Datenbank zu speichern. Arbeitet man hingegen mit mehr als einem Mandanten, wird empfoh-

http://localhost/kivitendo-erp/controller.pl?action=Admin/login
http://localhost/kivitendo-erp/controller.pl?action=Admin/login

Installation und Grundkonfiguration

26

len, für die Authentifizierungsdatenbank eine eigene Datenbank zu verwenden, die nicht gleichzeitig für einen Mandanten ver-
wendet wird.

2.11.2. Mandanten, Benutzer und Gruppen
kivitendos Administration kennt Mandanten, Benutzer und Gruppen, die sich frei zueinander zuordnen lassen.

kivitendo kann mehrere Mandaten aus einer Installation heraus verwalten. Welcher Mandant benutzt wird, kann direkt beim
Login ausgewählt werden. Für jeden Mandanten wird ein eindeutiger Name vergeben, der beim Login angezeigt wird. Weiter-
hin benötigt der Mandant Datenbankverbindungsparameter für seine Mandantendatenbank. Diese sollte über die Datenbank-
verwaltung geschehen.

Ein Benutzer ist eine Person, die Zugriff auf kivitendo erhalten soll. Sie erhält einen Loginnamen sowie ein Passwort. Weiter-
hin legt der Administrator fest, an welchen Mandanten sich ein Benutzer anmelden kann, was beim Login verifiziert wird.

Gruppen dienen dazu, Benutzern innerhalb eines Mandanten Zugriff auf bestimmte Funktionen zu geben. Einer Gruppe werden
dafür vom Administrator gewisse Rechte zugeordnet. Weiterhin legt der Administrator fest, für welche Mandanten eine Gruppe
gilt, und welche Benutzer Mitglieder in dieser Gruppe sind. Meldet sich ein Benutzer dann an einem Mandanten an, so erhält
er alle Rechte von allen denjenigen Gruppen, die zum Einen dem Mandanten zugeordnet sind und in denen der Benutzer zum
Anderen Mitglied ist,

Die Reihenfolge, in der Datenbanken, Mandanten, Gruppen und Benutzer angelegt werden, kann im Prinzip beliebig gewählt
werden. Die folgende Reihenfolge beinhaltet die wenigsten Arbeitsschritte:

1. Datenbank anlegen

2. Gruppen anlegen

3. Benutzer anlegen und Gruppen als Mitglied zuordnen

4. Mandanten anlegen und Gruppen sowie Benutzer zuweisen

2.11.3. Datenbanken anlegen
Zuerst muss eine Datenbank angelegt werden. Verwenden Sie für den Datenbankzugriff den vorhin angelegten Benutzer (in
unseren Beispielen ist dies ‘kivitendo’).

2.11.4. Gruppen anlegen
Eine Gruppe wird in der Gruppenverwaltung angelegt. Ihr muss ein Name gegeben werden, eine Beschreibung ist hingegen
optional. Nach dem Anlegen können Sie die verschiedenen Bereiche wählen, auf die Mitglieder dieser Gruppe Zugriff haben
sollen.

Benutzergruppen werden zwar in der Authentifizierungsdatenbank gespeichert, gelten aber nicht automatisch für alle Mandan-
ten. Der Administrator legt vielmehr fest, für welche Mandanten eine Gruppe gültig ist. Dies kann entweder beim Bearbeiten
der Gruppe geschehen ("diese Gruppe ist gültig für Mandanten X, Y und Z"), oder aber wenn man einen Mandanten bearbeitet
("für diesen Mandanten sind die Gruppen A, B und C gültig").

Wurden bereits Benutzer angelegt, so können hier die Mitglieder dieser Gruppe festgelegt werden ("in dieser Gruppe sind die
Benutzer X, Y und Z Mitglieder"). Dies kann auch nachträglich beim Bearbeiten eines Benutzers geschehen ("dieser Benutzer
ist Mitglied in den Gruppen A, B und C").

2.11.5. Benutzer anlegen
Beim Anlegen von Benutzern werden für viele Parameter Standardeinstellungen vorgenommen, die den Gepflogenheiten des
deutschen Raumes entsprechen.

Zwingend anzugeben ist der Loginname. Wenn die Passwortauthentifizierung über die Datenbank eingestellt ist, so kann hier
auch das Benutzerpasswort gesetzt bzw. geändert werden. Ist hingegen die LDAP-Authentifizierung aktiv, so ist das Pass-
wort-Feld deaktiviert.

Installation und Grundkonfiguration

27

Hat man bereits Mandanten und Gruppen angelegt, so kann hier auch konfiguriert werden, auf welche Mandanten der Benutzer
Zugriff hat bzw. in welchen Gruppen er Mitglied ist. Beide Zuweisungen können sowohl beim Benutzer vorgenommen wer-
den ("dieser Benutzer hat Zugriff auf Mandanten X, Y, Z" bzw. "dieser Benutzer ist Mitglied in Gruppen X, Y und Z") als auch
beim Mandanten ("auf diesen Mandanten haben Benutzer A, B und C Zugriff") bzw. bei der Gruppe ("in dieser Gruppe sind
Benutzer A, B und C Mitglieder").

2.11.6. Mandanten anlegen
Ein Mandant besteht aus Administrationssicht primär aus einem eindeutigen Namen. Weiterhin wird hier hinterlegt, welche
Datenbank als Mandantendatenbank benutzt wird. Hier müssen die Zugriffsdaten einer der eben angelegten Datenbanken ein-
getragen werden.

Hat man bereits Benutzer und Gruppen angelegt, so kann hier auch konfiguriert werden, welche Benutzer Zugriff auf den Man-
danten haben bzw. welche Gruppen für den Mandanten gültig sind. Beide Zuweisungen können sowohl beim Mandanten vor-
genommen werden ("auf diesen Mandanten haben Benutzer X, Y und Z Zugriff" bzw. "für diesen Mandanten sind die Grup-
pen X, Y und Z gültig") als auch beim Benutzer ("dieser Benutzer hat Zugriff auf Mandanten A, B und C") bzw. bei der Grup-
pe ("diese Gruppe ist für Mandanten A, B und C gültig").

2.12. Drucker- und Systemverwaltung
Im Administrationsmenü gibt es ferner noch die beiden Menüpunkte Druckeradministration und System.

2.12.1. Druckeradministration
Unter dem Menüpunkt Druckeradministration lassen sich beliebig viele "Druckbefehle" im System verwalten. Diese Befehle
werden mandantenweise zugeordnet. Unter Druckerbeschreibung wird der Namen des Druckbefehls festgelegt, der dann in der
Druckerauswahl des Belegs angezeigt wird.

Unter Druckbefehl definiert man den eigentlichen Druckbefehl, der direkt auf dem Webserver ausgeführt wird, bspw. 'lpr -P
meinDrucker' oder ein kompletter Pfad zu einem Skript (/usr/local/src/kivitendo/scripts/pdf_druck_in_verzeichnis.sh). Wird
ferner noch ein optionales Vorlagenkürzel verwendet, wird dieses Kürzel bei der Auswahl der Druckvorlagendatei mit einem
Unterstrich ergänzt, ist bspw. das Kürzel 'epson_drucker' definiert, so wird beim Ausdruck eines Angebots folgende Vorlage
geparst: sales_quotation_epson_drucker.tex.

2.12.2. System sperren / entsperren
Unter dem Menüpunkt System gibt es den Eintrag 'Installation sperren/entsperren'. Setzt man diese Sperre so ist der Zugang zu
der gesamten kivitendo Installation gesperrt.

Falls die Sperre gesetzt ist, erscheint anstelle der Anmeldemaske die Information: 'kivitendo ist momentan zwecks Wartungsar-
beiten nicht zugänglich.'.

Wichtig zu erwähnen ist hierbei noch, dass sich kivitendo automatisch 'sperrt', falls es bei einem Versionsupdate zu einem
Datenbankfehler kam. Somit kann hier nicht aus Versehen mit einem inkonsistenten Datenbestand weitergearbeitet werden.

2.13. E-Mail
kivitendo kann sowohl E-Mails direkt aus dem Programm heraus E-Mails versenden, als auch in das Programm importiern.
Damit dies funktioniert, müssen die E-Mail-Parameter korrekt konfiguriert sein. Dazu mehr in den folgenden Abschnitten.

2.13.1. E-Mail-Versand aus kivitendo heraus
Das Versenden von E-Mails kann zum Verschicken von Belegen genutzt werden, z.B. um ein Angebot direkt an einen Kunden
zu verschicken. Damit dies funktioniert, muss eingestellt werden, über welchen Server die E-Mails verschickt werden sollen.
kivitendo unterstützt dabei zwei Mechanismen: Versand über einen lokalen E-Mail-Server (z.B. mit Postfix™ oder Exim™,
was auch die standardmäßig aktive Methode ist) sowie Versand über einen SMTP-Server (z.B. der des eigenen Internet-Provi-
ders).

Installation und Grundkonfiguration

28

Welche Methode und welcher Server verwendet werden, wird über die Konfigurationsdatei config/kivitendo.conf
festgelegt. Dort befinden sich alle Einstellungen zu diesem Thema im Abschnitt '[mail_delivery]'.

2.13.1.1. Versand über lokalen E-Mail-Server

Diese Methode bietet sich an, wenn auf dem Server, auf dem kivitendo läuft, bereits ein funktionsfähiger E-Mail-Server wie
z.B. Postfix™, Exim™ oder Sendmail™ läuft.

Um diese Methode auszuwählen, muss der Konfigurationsparameter 'method = sendmail' gesetzt sein. Dies ist gleichzei-
tig der Standardwert, falls er nicht verändert wird.

Um zu kontrollieren, wie das Programm zum Einliefern gestartet wird, dient der Parameter 'sendmail = ...'. Der Stan-
dardwert verweist auf das Programm /usr/bin/sendmail, das bei allen oben genannten E-Mail-Serverprodukten für die-
sen Zweck funktionieren sollte.

Die Konfiguration des E-Mail-Servers selber würde den Rahmen dieses sprengen. Hierfür sei auf die Dokumentation des E-
Mail-Servers verwiesen.

2.13.1.2. Versand über einen SMTP-Server

Diese Methode bietet sich an, wenn kein lokaler E-Mail-Server vorhanden ist oder einer vorhanden, dieser aber nicht konfigu-
riert ist.

Um diese Methode auszuwählen, muss der Konfigurationsparameter 'method = smtp' gesetzt sein. Die folgenden Parame-
ter dienen dabei der weiteren Konfiguration:

hostname
Name oder IP-Adresse des SMTP-Servers. Standardwert: 'localhost'

port
Portnummer. Der Standardwert hängt von der verwendeten Verschlüsselungsmethode ab. Gilt 'security = none' oder
'security = tls', so ist 25 die Standardportnummer. Für 'security = ssl' ist 465 die Portnummer. Muss norma-
lerweise nicht geändert werden.

security
Wahl der zu verwendenden Verschlüsselung der Verbindung mit dem Server. Standardwert ist 'none', wodurch keine Ver-
schlüsselung verwendet wird. Mit 'tls' wird TLS-Verschlüsselung eingeschaltet, und mit 'ssl' wird Verschlüsselung via
SSL eingeschaltet. Achtung: Für 'tls' und 'ssl' werden zusätzliche Perl-Module benötigt (siehe unten).

login und password
Falls der E-Mail-Server eine Authentifizierung verlangt, so können mit diesen zwei Parametern der Benutzername und das
Passwort angegeben werden. Wird Authentifizierung verwendet, so sollte aus Sicherheitsgründen auch eine Form von Ver-
schlüsselung aktiviert werden.

2.13.2. Versendete E-Mails über IMAP exportieren

Es können versendete E-Mails über IMAP exportiert werden. Dazu muss der entsprechende Server, auf dem die E-Mails
abgelegt werden sollen, konfiguriert werden. Dies geschieht in der Konfigurationsdatei config/kivitendo.conf im
Abschnitt '[sent_emails_in_imap]'. Es können auch Server für spezifische E-Mail-Adressen konfiguriert werden,
indem der Abschnitt kopiert wird und mit dem Namen '[sent_emails_in_imap/email/EMAILADDRESS]', wobei
'EMAILADDRESS' die entsprechenden E-Mail-Adresse ist, versehen wird.

Die Reihenfolge für die Auswahl der Konfiguration ist wie folgt:

1. Falls es für die Absender-Adresse eine Konfiguration gibt nimm diese.

2. Falls es es für die benutzerbezogene E-Mail-Adresse eine Konfiguration gibt dann nimm diese.

3. Falls es eine generelle Konfiguration gibt dann nimm diese.

Installation und Grundkonfiguration

29

Die folgenden Parameter dienen der Konfiguration:

enabled
Falls 'enabled = 0' gesetzt ist, wird der Export von E-Mails deaktiviert. Dies ist der Standardwert. Falls 'enabled =
1' gesetzt ist, wird ist der Export von E-Mails aktiviert.

hostname
Name oder IP-Adresse des IMAP-Servers. Standardwert: 'localhost'

port
Portnummer. Der Standardwert hängt von der verwendeten Verschlüsselungsmethode ab. Gilt 'ssl = 0', so ist 993 die
Standardportnummer. Für 'ssl = 0' ist 143 die Portnummer. Muss normalerweise nicht geändert werden.

ssl
Wahl ob eine Verschlüsselung bei der Verbindung mit dem Server verwendet wird. Standardwert ist '1', wodurch eine
SSL-Verschlüsselung verwendet wird. Mit '0' wird keine Verschlüsselung genutzt.

username und password
Falls der IMAP-Server eine Authentifizierung verlangt, so können mit diesen zwei Parametern der Nutzername und das
Passwort angegeben werden. Wird Authentifizierung verwendet, so sollte aus Sicherheitsgründen auch Verschlüsselung
aktiviert werden.

folder
Wahl des Ordners, in den kivitendo gesendete E-Mails gespeichert. Standardwert ist 'Sent/Kivitendo'. Ordnerhierar-
chien können mit einem Slash ('/') getrennt werden. Der gewählte Ordner muss existieren.

Bei einem Fehler bricht die Funktion ab und der Anwender bekommt die Fehlermeldung, dass die E-Mail prinzipiell nicht ver-
schickt werden konnte. An dieser Stelle muss der kivitendo-Admin etwas genauer prüfen, ob der Mail-Versand und/oder die
Synchronisation den Fehler verursacht hat. Ein Blick ins Email-Journal kann helfen den Fehler einzuschränken.

2.13.3. E-Mails in kivitendo importieren
Um E-Mails in kivitendo zu importieren, muss der entsprechende Server, von dem die E-Mails abgeholt werden sollen, konfi-
guriert werden. Dies geschieht in der Konfigurationsdatei config/kivitendo.conf im Abschnitt '[imap_client]'.

Die folgenden Parameter dienen der Konfiguration:

enabled
Falls 'enabled = 0' gesetzt ist, wird der Import von E-Mails deaktiviert. Dies ist der Standardwert. Falls 'enabled =
1' gesetzt ist, wird ist der Import von E-Mails aktiviert.

hostname
Name oder IP-Adresse des IMAP-Servers. Standardwert: 'localhost'

port
Portnummer. Der Standardwert hängt von der verwendeten Verschlüsselungsmethode ab. Gilt 'ssl = 0', so ist 993 die
Standardportnummer. Für 'ssl = 0' ist 143 die Portnummer. Muss normalerweise nicht geändert werden.

ssl
Wahl, ob eine Verschlüsselung bei der Verbindung mit dem Server verwendendet wird. Standardwert ist '1', wodurch eine
SSL-Verschlüsselung verwendet wird. Mit '0' wird keine Verschlüsselung genutzt.

username und password
Falls der IMAP-Server eine Authentifizierung verlangt, so können mit diesen zwei Parametern der Nutzername und das
Passwort angegeben werden. Wird Authentifizierung verwendet, so sollte aus Sicherheitsgründen auch Verschlüsselung
aktiviert werden.

base_folder
Wahl des Ordners, den kivitendo als Basis für das Erstellen von Unterordnern und das Abholen von E-Mails verwendet.
Standardwert ist 'INBOX'. Ordnerhierarchien können mit einem Slash ('/') getrennt werden. Beispiel: 'INBOX/kivi-
tendo'. In diesem Ordner dürfen keine Unterordner existieren und keine manuell angelegt werden.

Installation und Grundkonfiguration

30

Wenn eingeschaltet, wird beim Anlegen von Verkaufsangeboten und -aufträgen ein Unterordner im E-Mail-Client für den ent-
sprechenden Beleg angelegt. E-Mails, in diesen Ordner werden automatisch beim Öffnen des Belegs in kivitendo importiert.
Um die E-Mails übersichtlich zu halten, kann der Hintergrund-Job 'CleanUpEmailSubfolders' genutzt werden. Dieser
importiert alle E-Mails und löscht alle Unterordnern, die nicht zu einem offenen Beleg gehören. Importierte E-Mails werden
nicht gelöscht; erst beim Löschen des Unterordners werden sie gelöscht.

Es können auch E-Mails in kivitendo importiert werden, die nicht zu einem Beleg gehören. Dafür kann der Hintergrund-Job
'SyncEmailFolder' verwendet werden. Dieser synchronisiert standartmäßig den Ordner der in 'base_folder' angegeben
ist. Dies kann mit dem Job-Parameter 'folder' geändert. Die Importierten E-Mails werden im E-Mail-Journal gespeichert.

Beim Umzug des E-Mail-Servers kann kivitendo schon importierte E-Mails nicht mehr erkennen. Dies führt dazu, dass alle E-
Mails erneut importiert werden.

2.14. Drucken mit kivitendo
Das Drucksystem von kivitendo benutzt von Haus aus LaTeX-Vorlagen. Um drucken zu können, braucht der Server ein geeig-
netes LaTeX System. Am einfachsten ist dazu eine texlive Installation. Unter debianoiden Betriebssystemen installiert man
die Pakete mit:

apt install texlive-base-bin texlive-latex-recommended texlive-fonts-recommended \
 texlive-latex-extra texlive-lang-german ghostscript latexmk

Für Fedora benötigen Sie die folgenden Pakete:

dnf install texlive-collection-latex texlive-collection-latexextra \
 texlive-collection-latexrecommended texlive-collection-langgerman \
 texlive-collection-langenglish

Für openSUSE benötigen Sie die folgenden Pakete:

zypper install texlive-collection-latex texlive-collection-latexextra \
 texlive-collection-latexrecommended texlive-collection-langgerman \
 texlive-collection-langenglish

Anmerkung

kivitendo erwartet eine aktuelle TeX Live Umgebung, um PDF/A zu erzeugen. Aktuelle Distributionen von 2020
erfüllen diese. Überprüfbar ist dies mit dem Aufruf des installation_check.pl mit Parameter -l:

scripts/installations_check.pl -l

kivitendo bringt drei alternative Vorlagensätze mit:

• RB

• marei

• rev-odt

Der ehemalige Druckvorlagensatz "f-tex" wurde mit der Version 3.5.6 entfernt, da er nicht mehr gepflegt wird.

2.14.1. Vorlagenverzeichnis anlegen

Es lässt sich ein initialer Vorlagensatz erstellen. Die LaTeX-System-Abhängigkeiten hierfür kann man prüfen mit:

./scripts/installation_check.pl -lv

Der Angemeldete Benutzer muss in einer Gruppe sein, die über das Recht "Konfiguration -> Mandantenverwaltung" verfügt.
Siehe auch Abschnitt 2.11.4, „Gruppen anlegen“ [26].

Installation und Grundkonfiguration

31

Im Userbereich lässt sich unter: "System -> Mandantenverwaltung -> Verschiedenes" die Option "Neue Druckvorlagen aus
Vorlagensatz erstellen" auswählen.

1. Vorlagen auswählen: Wählen Sie hier den Vorlagensatz aus, der kopiert werden soll (RB, marei oder odt-rev.)

2. Neuer Name: Der Verzeichnisname für den neuen Vorlagensatz. Dieser kann im Rahmen der üblichen Bedingungen für
Verzeichnisnamen frei gewählt werden.

Nach dem Speichern wird das Vorlagenverzeichnis angelegt und ist für den aktuellen Mandanten ausgewählt. Der gleiche Vor-
lagensatz kann, wenn er mal angelegt ist, bei mehreren Mandanten verwendet werden. Eventuell müssen Anpassungen (Logo,
Erscheinungsbild, etc) noch vorgenommen werden. Den Ordner findet man im Dateisystem unter ./templates/[Neuer
Name]

2.14.2. Der Druckvorlagensatz marei

Anmerkung

Die aktuelle Dokumentation inkl. dem Foliensatz vom kivi-Treffen im August 2023 befindet sich hier: https://
peitex.de/materialien/2023-08-04_kivitendo/14

2.14.2.1. Quickstart – Wo kann was angepasst werden?

Anmerkung

In keinem Fall sollten Dateien mit der Endung *.cls oder *.sty geändert werden. Durch Änderungen an die-
sen Dateien verhindert man Updates auf neuer Versionen. Zwar kopiert kivitendo die Datei und bearbeitet diese
beim Update nicht. Allerdings sind sämtliche Änderungen über die Konfigurationsdateien möglich und erhöhen
die Wartbarkeit.

• Pfad zu Angaben über Mandant*innen (default: firma)

• Logo/Briefpapier, falls für alle Mandant*innen in gleicher Struktur. Sonst in der ident.tex.

• Layout der Kopf/Fußzeile

• innerhalb dieser Datei werden auch die folgenden Dateien geladen:

• firma/ident.tex Mandant*innenspezifische Konfiguration, Adressdaten

• firma/$währungskürzel_account.tex

• insettings.tex :

• Sprache/Übersetzungen.\\Es muss mindestens eine Sprache angelegt werden!

 \item[deutsch.tex] Textschnipsel für Deutsch\\
 Dafür eine Sprache mit Vorlagenkürzel DE anlegen
 \item[english.tex] Textschnipsel für Englisch\\
 Dafür eine Sprache mit Vorlagenkürzel EN anlegen

Alle dokumententypspezifischen Einstellungen müssen in der jeweiligen Template-Datei modifiziert werden.

2.14.2.2. Aufbau

Die Grundstruktur besteht je Dokumententyp aus einer Basisdatei und verschiedenen Setup-Dateien.

14 https://peitex.de/materialien/2023-08-04_kivitendo/

https://peitex.de/materialien/2023-08-04_kivitendo/
https://peitex.de/materialien/2023-08-04_kivitendo/
https://peitex.de/materialien/2023-08-04_kivitendo/

Installation und Grundkonfiguration

32

Die Basis wurde so überarbeitet, dass Dokumente nun generell auf der Dokumentenklasse scrartcl.cls basieren und das
Paket kiviletter.sty benutzen.

Mandant*innenspezifische Konfiguration findet sich in der Datei insettings.tex und dem Ordner eines spezifischen
Mandant*innen (default=*firma/*).

2.14.2.3. Mandant*innen / Firma

Um gleiche Vorlagen für verschiedene Firmen verwenden zu können, wird je nach dem Wert der Kivitendo-Variablen
\kivivar{kivicompany} ein Firmenverzeichnis ausgewählt (siehe insettings.tex), in dem Briefkopf, Identitä-
ten und Währungs-/Kontoeinstellungen hinterlegt sind. \kivivar{kivicompany} enthält den Namen des verwendeten
Mandant*innendaten. Ist kein Firmenname eingetragen, so wird das generische Unterverzeichnis *firma* verwendet.

2.14.2.4. Identitäten

In jedem Firmen-Unterverzeichnis soll eine Datei ident.tex vorhanden sein, die mit |\newcommand| Werte für |\telefon|, |
\fax|, |\firma|, |\strasse|, |\ort|, |\ustid|, |\email| und |\homepage| definiert.

2.14.2.5. Währungen/Konten

Für jede Währung (siehe insettings.tex) soll eine Datei vorhanden sein, die das Währungssymbol (|\currency|) und fol-
gende Angaben für ein Konto in dieser Währung enthält |\kontonummer|, |\bank|, |\bankleitzahl|, |\bic| und |\iban|. So kann in
den Dokumenten je nach Währung ein anderes Konto angegeben werden. Nach demselben Schema können auch weitere, alter-
native Bankverbindungen angelegt werden, die dann in insettings.tex als Variable in der Fußzeile eingefügt werden.

Als Fallback (falls kivitendo keine Währung an das Druckvorlagen-System übergibt) ist Euro eingestellt. Dies lässt sich in der
insettings.tex über das optionale Argument von |\setupCurrencyConfig| anpassen, z.B.

 \setupCurrencyConfig[chf]{\identpath}{\lxcurrency}

für Schweizer Franken als Standardwährung.

2.14.2.6. Briefbogen/Logos

Eine Hintergrundgrafik oder ein Logo kann in Abhängigkeit vom Medium (z.B. nur beim Verschicken mit E-Mail) eingebun-
den werden.

Desweiteren sind (auskommentierte) Beispiele enthalten für eine Grafik als Briefkopf, nur ein Logo, oder ein komplettes A4-
PDF als Briefpapier.

Absolute Positionierung innerhalb des Brief-Layouts ist über die entsprechende Dokumentation des scrlayer-Paketes mög-
lich. Da die Voreinstellungen bereits einige Sonderfälle automatisch berücksichtigen ist mit den Anpassungen Vorsicht
geboten. Sämtliche Einstellungen sollten jedoch außerhalb der *.sty-Dateien vorgenommen werden. Anpassungen der
insettings.tex betreffen hierbei alle Mandant*innen. Spezifischere Einstellungen sind über die zugehörige Konfigurati-
onsdatei (ident.tex) möglich. In diesem Fall kann zum Ende der insettings eine weitere Konfigurationsdatei über die Ver-
wendung von |\identpath| geladen werden. Ein Beispiel ist in der insettings.tex enthalten.

2.14.2.7. Fußzeile

Die Tabelle im Fuß verwendet die Angaben aus firma/ident.tex und *firma/_account.tex. Ihre Struktur wird in
der insettings.tex definiert. Sie kann anschließend auch Mandant*innenspezifisch überschrieben werden.

2.14.2.8. Seitenstil/Basislayout

Das Seitenlayout wird über \pck{scrlayer-scrpage} bestimmt. Die ausführliche Dokumentation findet sich in \cite{scrguide}.
Es existieren in der Datei insettings.tex einige Hinweise zu den Anpassungen. Die Basiskonfiguration ist ebenfalls dort
eingetragen.

Installation und Grundkonfiguration

33

Neben den in Abschnitt \ref{sec:options} beschriebenen Optionen zum Abschalten der Fußzeile kann der Inhalt der Fußzeile
über die \pck{scrlayer-scrpage} Makros, wie

 \cfoot[|\meta{Inhalt auf der ersten Briefseite}|]{|\meta{Inhalt auf folgenden Briefseiten}|}

geändert werden.

Die Kopfzeile unterscheidet sich von Dokumententyp zu Dokumententyp leicht, da diese über Datenbankvariablen befüllt
wird. Hierfür wird das Makro |\ourhead| in der insettings.tex definiert.

 \DescribeMacro{\ourhead}\marg{Bezeichner}\marg{Eintrag}\marg{Titel}\marg{Nummer}\marg{Datum}

Diese Definition kann ebenfalls über die insettings.tex angepasst oder auch nachträglich überschrieben werden:

 \newcommand{\ourhead}[5] {%
 \chead{%
 \makebox[\textwidth]{%
 \Ifstr{#1}{}{}{#1: #2 \hspace{0.7cm}}%
 #3%
 \Ifstr{#4}{}{}{~\nr: #4}%
 \Ifstr{#5}{}{}{\vom ~ #5}%
 \hspace{0.7cm} - \seite ~ \thepage/\letterlastpage ~-%
 }%
 }%
 }

In der Standard-Einstellung sieht eine Kopfzeile mit obigen Aufruf dann folgendermaßen aus:

 \newcommand{\ourhead}[5] {%
 \makebox[\textwidth]{%
 \Ifstr{#1}{}{}{#1: #2 \hspace{0.7cm}}%
 #3%
 \Ifstr{#4}{}{}{~\nr: #4}%
 \Ifstr{#5}{}{}{\vom ~ #5}%
 \hspace{0.7cm} - \seite ~ \thepage/\letterlastpage ~-%
 }%
 }

 \begingroup
 \def\letterlastpage{50}

 \ourhead{arg1}{arg2}{arg3}{arg4}{arg5}

 \smallskip
 Erzeugt mit dem Aufruf
 \ourhead{arg1}{arg2}{arg3}{arg4}{arg5}
 \endgroup

2.14.2.9. Absenderergänzung

Die Absenderergänzung wird über die Variable |location| in der |kiviletter.sty| folgendermaßen belegt:

 \setkomavar{location}{
 \Ifkomavarempty{transaction}{}{{

Installation und Grundkonfiguration

34

 \usekomafont{transaction}
 \usekomavar{transaction}
 }
 }
 \par
 \medskip
 \parbox{\useplength{locwidth}}{
 \locationentry{date}
 \locationentry{myref}
 \locationentry{customer}
 \locationentry{yourref}
 \locationentry{delivery}
 \locationentry{quote}
 \locationentry{orderID}
 \locationentry{projectID}
 \locationentry{taxpoint}
 \locationentry[\ansprechpartner]{fromname}
 \locationentry{fromphone}
 \locationentry*{fromemail}
 }
 }

Um die Reihenfolge der Variablenausgabe zu verändern, kann diese Definition als Basis in die insettings.tex oder
ident.tex (Falls nur für eine Firma) kopiert und dort entsprechend modifiziert werden.

Das Vorgehen geht für alle vorbelegten Variablen analog.

2.14.2.10. Allgemeine TeXnische Hinweise

2.14.2.10.1. Änderung der Basisschriftart

\LaTeX{} kann grundsätzlich beliebige Schriftarten verwenden. Hierfür sollte allerdings immer darauf geachtet werden, dass
die Lizenz der Schriftart das einbetten von Glyphen erlaubt. Dies liegt in der Verantwortung der Anwender*innen. Darüber
hinaus ist wichtig, welches Kompilierungsprogramm verwendet werden muss. Um TrueType oder OpenType Schriftarten zu
nutzen sollte |lualatex| verwendet werden. Bei Type1 Schriftarten, die speziell für \LaTeX{} installiert wurden, ist pdfLaTeX
möglich. Da man heutzutage nur noch moderne Schriftformate Verwenden sollte, wird hier lediglich die Variante für |lualatex|
aufgelistet.

Die Konfiguration läuft hierbei über das \pck{fontspec} Paket (Doku siehe \cite{fontspec}). Dann hängt es davon ab, ob die
Basisschriftart eine Serifenschriftart ist oder nicht. In jedem Fall wird die Änderung entweder in der insettings.tex,
sofern sie für alle Mandant*innen gelten soll oder in der Mantant*innenspezifischen Konfigurationsdatei gsesetzt.

2.14.2.10.1.1. Änderung, falls es ein Schriftpaket gibt

Wenn möglich sollte die Schriftart über ein entsprechendes Konfigurationspaket gesetzt werden. Ob ein solches existiert kann
man sehr leicht über eine Suche nach dem Namen unter \url{ctan.org} herausfinden.

2.14.2.10.1.2. Änderung der Basisschriftart auf eine Schriftart mit Serifen

 \setmainfont{|\meta{Name der Schriftart, z.B. SourceSerifPro}|}

2.14.2.10.1.3. Änderung der Basisschriftart auf eine Schriftart ohne Serifen

 \setsansfont{|\meta{Name der Schriftart, z.B. SourceSansPro}|}
 \renewcommand*{\familydefault}{\sfdefault}

2.14.2.10.2. Unterscheidungen durch String-Vergleich

Installation und Grundkonfiguration

35

 \Ifstr{\lxmedia}{printer}{Falls gedruckt werden soll} {sonst}

2.14.3. Der Druckvorlagensatz RB
Hierbei handelt es sich um einen vollständigen LaTeX Dokumentensatz mit alternativem Design. Die odt oder html-Varianten
sind nicht gepflegt.

Die konzeptionelle Idee der Vorlagen wird hier15 auf Folie 5 bis 10 vorgestellt. Informationen zur Anpassung an die eigenen
Firmendaten finden sich in der Datei Readme.tex im Vorlagenverzeichnis.

Eine kurze Übersicht der Features:

• Mehrsprachenfähig, mit Deutscher und Englischer Übersetzung

• Zentrale Konfigurationsdateien, die für alle Belege benutzt werden, z.B. für Kopf- und Fußzeilen, und Infos wie Bankdaten

• mehrere vordefinierte Varianten für Logos/Hintergrundbilder

• Berücksichtigung für Steuerzonen "EU mit USt-ID Nummer" oder "Außerhalb EU"

2.14.4. Der Druckvorlagensatz rev-odt
Hierbei handelt es sich um einen Dokumentensatz der mit odt-Vorlagen erstellt wurde. Es gibt in dem Verzeichnis eine Read-
me-Datei, die eventuell aktueller als die Dokumentation hier ist. Die odt-Vorlagen in diesem Verzeichnis "rev-odt" wurden von
revamp-it, Zürich erstellt und werden laufend aktualisiert. Ein paar der Formulierungen in den Druckvorlagen entsprechen dem
Schweizer Sprachgebrauch, z.B. "Offerte" oder "allfällig".

Hinweis zum Einsatz des Feldes "Land" bei den Stammdaten für KundInnen und LieferantInnen, sowie bei Lieferadressen: Die
in diesem Vorlagensatz vorhandenen Vorlagen erwarten für "Land" das entsprechende Kürzel, das in Adressen vor die Postleit-
zahl gesetzt wird. Das Feld kann auch komplett leer bleiben. Wer dies anders handhaben möchte, muss die Vorlagen entspre-
chend anpassen.

odt-Vorlagen können mit LibreOffice oder OpenOffice editiert und den eigenen Bedürfnissen angepasst werden. Wichtig beim
Editieren von if-Blöcken ist, dass immer der gesamte Block überschrieben werden muss und nicht nur Teile davon, da dies
sonst oft zu einer odt-Datei führt, die vom Parser nicht korrekt gelesen werden kann.

Mahnungen können unter folgenden Einschränkungen mit den odt-Vorlagen im Vorlagensatz rev-odt erzeugt werden:

• als Druckoption steht nur 'PDF(OpenDocument/OASIS)' zur Verfügung, das heisst, die Mahnungen werden als PDF-Datei
ausgegeben.

• für jede Rechnung muss eine eigene Mahnung erzeugt werden (auch wenn bei einzelnen KundInnen mehrere überfällige
Rechnungen vorhanden sind).

Mehrere Mahnungen für eine Kundin / einen Kunden werden zu einer PDF-Datei zusammengefasst

Die Vorlagen zahlungserinnerung.odt sowie mahnung.odt sind für das Erstellen einer Zahlungserinnerung bzw. Mahnung selbst
vorgesehen, die Vorlage mahnung_invoice.odt für das Erstellen einer Rechnung über die verrechneten Mahngebühren und Ver-
zugszinsen.

Zur Zeit gibt es in kivitendo noch keine Möglichkeit, odt-Vorlagen bei Briefen und Pflichtenheften einzusetzen. Entsprechende
Vorlagen sind deshalb nicht vorhanden.

Fehlermeldungen, Anregungen und Wünsche bitte senden an: empfang@revamp-it.ch

2.14.5. Allgemeine Hinweise zu LaTeX Vorlagen
In den allermeisten Installationen sollte das Drucken jetzt schon funktionieren. Sollte ein Fehler auftreten, wirft TeX sehr lan-
ge Fehlerbeschreibungen, der eigentliche Fehler ist immer die erste Zeile, die mit einem Ausrufezeichen anfängt. Häufig auf-
tretende Fehler sind zum Beispiel:

15 http://www.kivitendo-support.de/vortraege/Lx-Office%20Anwendertreffen%20LaTeX-Druckvorlagen-Teil3-finale.pdf

http://www.kivitendo-support.de/vortraege/Lx-Office%20Anwendertreffen%20LaTeX-Druckvorlagen-Teil3-finale.pdf
http://www.kivitendo-support.de/vortraege/Lx-Office%20Anwendertreffen%20LaTeX-Druckvorlagen-Teil3-finale.pdf

Installation und Grundkonfiguration

36

• ! LaTeX Error: File `eurosym.sty' not found. Die entsprechende LaTeX-Bibliothek wurde nicht gefunden. Das tritt vor allem
bei Vorlagen aus der Community auf. Installieren Sie die entsprechenden Pakete.

• ! Package inputenc Error: Unicode char \u8:... set up for use with LaTeX. Dieser Fehler tritt auf, wenn sie versuchen mit
einer Standardinstallation exotische utf8 Zeichen zu drucken. TeXLive unterstützt von Haus nur romanische Schriften und
muss mit diversen Tricks dazu gebracht werden andere Zeichen zu akzeptieren. Adere TeX Systeme wie XeTeX schaffen
hier Abhilfe.

Wird gar kein Fehler angezeigt, sondern nur der Name des Templates, heißt das normalerweise, dass das LaTeX Binary nicht
gefunden wurde. Prüfen Sie den Namen in der Konfiguration (Standard: latexmk --pdflatex), und stellen Sie sicher,
dass latexmk (oder das von Ihnen verwendete System) vom Webserver ausgeführt werden darf.

Wenn sich das Problem nicht auf Grund der Ausgabe im Webbrowser verifizieren lässt:

• editiere [kivitendo-home]/config/kivitendo.conf und ändere "keep_temp_files" auf 1

keep_temp_files = 1;

• bei fastcgi oder mod_perl den Webserver neu Starten

• Nochmal einen Druckversuch im Webfrontend auslösen

• wechsel in das users Verzeichnis von kivitendo

cd [kivitendo-home]/users

• LaTeX Suchpfad anpassen:

export TEXINPUTS=".:[kivitendo-home]/templates/[aktuelles_template_verzeichniss]:"

• Finde heraus, welche Datei kivitendo beim letzten Durchlauf erstellt hat

ls -lahtr ./1*.tex

Es sollte die letzte Datei ganz unten sein

• für besseren Hinweis auf Fehler texdatei nochmals übersetzen

pdflatex ./1*.tex

in der *.tex datei nach dem Fehler suchen.

2.15. OpenDocument-Vorlagen
kivitendo unterstützt die Verwendung von Vorlagen im OpenDocument-Format, wie es LibreOffice oder OpenOffice (ab Versi-
on 2) erzeugen. kivitendo kann dabei sowohl neue OpenDocument-Dokumente als auch aus diesen direkt PDF-Dateien erzeu-
gen. Nachfolgend ist die Verwendung mit LibreOffice beschrieben. Für die Verwendung mit OpenOffice müssen die Einstel-
lungen allenfalls angepasst werden.

2.15.1. Grundeinstellung
Um die Unterstützung von OpenDocument-Vorlagen zu aktivieren, muss in der Datei config/kivitendo.conf die
Variable opendocument, im Abschnitt print_templates, auf 1 stehen. Dies ist die Standardeinstellung.

2.15.2. Direkte Erzeugung von PDF-Dateien
Während die Erzeugung von reinen OpenDocument-Dateien keinerlei weitere Software benötigt, wird zur Umwandlung dieser
Dateien in PDF LibreOffice oder OpenOffice benötigt.

Unter Debian kann dieses installiert werden mit:

Installation und Grundkonfiguration

37

apt install libreoffice

Der Pfad zu LibreOffice kann in der Datei config/kivitendo.conf, im Abschnitt applications, angepasst werden.
Unter Debian sollte dies nicht notwendig sein.

2.15.2.1. Variante 1)

In der Standardeinstellung wird LibreOffice für jedes Dokument neu gestartet. Es ist keine weitere Konfiguration erforderlich.

2.15.2.2. Variante 2)

Die zweite Variante startet ein LibreOffice, das auch nach der Umwandlung des Dokumentes gestartet bleibt. Bei weiteren
Umwandlungen wird dann diese laufende Instanz benutzt. Der Vorteil ist, dass die Zeit zur Umwandlung möglicherweise redu-
ziert wird, weil nicht für jedes Dokument eine neue Instanz gestartet werden muss.

Dazu muss in der Konfigurationsdatei config/kivitendo.conf, im Abschnitt print_templates,
openofficeorg_daemon = 1 gesetzt werden.

Diese Methode verwendet Python und die Python uno bindings. Unter Debian werden diese mit LibreOffice mitgeliefert.

Die Optionen python_uno und python_uno_path in der Konfigurationsdatei config/kivitendo.conf dienen zur
Anpassung der Python uno Pfade. Unter Debian sollte keine Anpassung notwendig sein.

2.15.3. Vorbereitungen

2.15.3.1. Adminbereich

Damit beim Erstellen von Rechnungen und Aufträgen neben der Standardvorlage ohne Einzahlungsschein weitere Vorlagen
(z.B. mit Einzahlungsschein) auswählbar sind, muss für jedes Vorlagen-Suffix ein Drucker eingerichtet werden:

• Druckeradministration → Drucker hinzufügen

• Mandant wählen

• Druckerbeschreibung → aussagekräftiger Text: wird in der Auftrags- bzw. Rechnungsmaske als Auswahl angezeigt (z.B. mit
Einzahlungsschein Bank xy)

• Druckbefehl → beliebiger Text (hat für das Erzeugen von Aufträgen oder Rechnungen als odt-Datei keine Bedeutung, darf
aber nicht leer sein)

• Vorlagenkürzel → besr bzw. selbst gewähltes Vorlagensuffix (muss genau der Zeichenfolge entsprechen, die zwischen
"invoice_" bzw. "sales_order_" und ".odt" steht.)

• speichern

2.15.3.2. Benutzereinstellungen

Wer den Ausdruck mit Einzahlungsschein als Standardeinstellung im Rechnungs- bzw. Auftragsformular angezeigt haben
möchte, kann dies persönlich für sich bei den Benutzereinstellungen konfigurieren:

• Programm → Benutzereinstellungen → Druckoptionen

• Standardvorlagenformat → OpenDocument/OASIS

• Standardausgabekanal → Bildschirm

• Standarddrucker → gewünschte Druckerbeschreibung auswählen (z.B. mit Einzahlungsschein Bank xy)

• Anzahl Kopien → leer

Installation und Grundkonfiguration

38

• speichern

2.15.3.3. Auswahl der Druckvorlage in kivitendo beim Erzeugen
einer odt-Rechnung (analog bei Auftrag)

Im Fussbereich der Rechnungsmaske muss neben Rechnung, OpenDocument/OASIS und Bildschirm die im Adminbereich
erstellte Druckerbeschreibung ausgewählt werden, falls diese nicht bereits bei den Benutzereinstellungen als persönlicher Stan-
dard gewählt wurde.

2.15.4. Schweizer QR-Rechnung mit OpenDocument Vor-
lagen
Mit der Version 3.6.0 unterstützt Kivitendo die Erstellung von Schweizer QR-Rechnungen gemäss Swiss Payment Standards,
Version 2.216. Implementiert sind hierbei die Varianten:

• QR-IBAN mit QR-Referenz

• IBAN ohne Referenz

2.15.4.1. Einstellungen

2.15.4.1.1. Mandantenkonfiguration

Unter System → Mandantenkonfiguration → Features. Im Abschnitt Einkauf und Verkauf, beim Punkt Verkaufsrechnungen mit
Schweizer QR-Rechnung erzeugen, die gewünschte Variante wählen.

2.15.4.1.2. Konfiguration der Bankkonten

Unter System → Bankkonten muss bei mindestens einem Bankkonto die Option Nutzung mit Schweizer QR-Rechnung auf Ja
gestellt werden.

Die IBAN muss ohne Leerzeichen angegeben werden.

Tipp

Für die Variante QR-IBAN mit QR-Referenz muss dieses Konto unter IBAN eine gültige QR-IBAN Nummer
enthalten. Diese unterscheidet sich von der regulären IBAN.

Zusätzlich muss eine gültige Bankkonto Identifikationsnummer angegeben werden (6-stellig).

Diese werden von der jeweiligen Bank vergeben.

Sind mehrere Konten ausgewählt wird das erste verwendet.

2.15.4.1.3. Rechnungen ohne Betrag

Für Rechnungen ohne Betrag (z.B. Spenden) kann, in der jeweiligen Rechnung, die Checkbox QR-Rechnung ohne Betrag akti-
viert werden. Diese Checkbox erscheint nur, wenn QR-Rechnungen in der Mandantenkonfiguration aktiviert sind (variante
ausgewählt).

Dies wirkt sich lediglich auf den erzeugten QR-Code aus. Die Vorlage muss separat angepasst und ausgewählt werden.

2.15.4.2. Adressdaten

Die Adressdaten zum Zahlungsempfänger werden aus der Mandantenkonfiguration entnommen. Unter System → Mandanten-
konfiguration → Verschiedenes, Abschnitt Firmenname und -adresse.

16 https://www.paymentstandards.ch/dam/downloads/ig-qr-bill-de.pdf

Installation und Grundkonfiguration

39

Die Adressdaten zum Zahlungspflichtigen stammen aus den Kundendaten der jeweiligen Rechnung.

Ist bei den Adressdaten kein Land angegeben, wird standardmässig Schweiz verwendet. Akzeptiert werden Ländername oder
Ländercode, also z.B. "Schweiz" oder "CH".

Die Adressdaten können in der Vorlage mit den jeweiligen Variablen eingetragen werden. Siehe auch: Abschnitt 3.3, „Doku-
mentenvorlagen und verfügbare Variablen“ [51]

Der erzeugte QR-Code verwendet Adress-Typ "K" (Kombinierte Adressfelder, 2 Zeilen).

2.15.4.3. Referenznummer

Die Referenznummer wird in Kivitendo erzeugt und setzt sich wiefolgt zusammen:

• Bankkonto Identifikationsnummer (6-stellig)

• Kundennummer (6-stellig, mit führenden Nullen aufgefüllt)

• Rechnungsnummer (14-stellig, mit führenden Nullen aufgefüllt)

• Prüfziffer (1-stellig, berechnet mittels modulo 10, rekursiv)

Es sind lediglich Ziffern erlaubt. Allfällige Buchstaben und Sonderzeichen werden entfernt und fehlende Stellen werden mit
führenden Nullen aufgefüllt.

2.15.4.4. Vorlage

Der Vorlagensatz "rev-odt" enthält die Vorlage invoice_qr.odt, welche für die Erstellung von QR-Rechnungen vorgese-
hen ist. Damit diese verwendet werden kann muss wie obenstehend beschrieben ein Drucker hinzugefügt werden, allerdings
mit dem Vorlagenkürzel qr (siehe Abschnitt 2.15.3.1, „Adminbereich“ [37]). Weitere Vorlagen für die QR-Rechnung müs-
sen im Dateinamen, bzw. Vorlagenkürzel, ebenfalls die Zeichenfolge qr enthalten, also z.b. invoice_qr2.odt etc.

Die Vorlagen können beliebig angepasst werden. Zwingend müssen diese jedoch das QR-Code Platzhalter Bild, als einge-
bettetes Bild, enthalten. Da dieses beim Ausdrucken/Erzeugen der Rechnung durch das neu generierte QR-Code Bild ersetzt
wird. Das Bild muss den Namen QRCodePlaceholder tragen. In Libreoffice unter Bild-Kontextmenü → Einstellungen →
Optionen → Name einstellbar. Siehe dazu auch die Beispielvorlage.

2.15.4.4.1. Zusätzliche Variablen für Vorlage

Zusätzlich zu den in der Vorlage standardmässig verfügbaren Variablen (siehe Abschnitt 3.3, „Dokumentenvorlagen und ver-
fügbare Variablen“ [51]), werden die folgenden Variablen erzeugt:

ref_number_formatted
Referenznummer formatiert mit Leerzeichen, z.B.: 21 00000 00003 13947 14300 09017

iban_formatted
IBAN formatiert mit Leerzeichen

amount_formatted
Betrag formatiert mit Tausendertrennzeichen Leerschlag, z.B.: 1 005.55

2.16. Nomenklatur

2.16.1. Datum bei Buchungen

Seit der Version 3.5 werden für Buchungen in kivitendo einheitlich folgende Bezeichnungen verwendet:

• Erfassungsdatum (en: Entry Date, code: Gldate)

Installation und Grundkonfiguration

40

bezeichnet das Datum, an dem die Buchung in kivitendo erfasst wurde.

• Buchungsdatum (en: Booking Date, code: Transdate)

bezeichnet das buchhaltungstechnisch für eine Buchung relevante Datum

Das Rechnungsdatum bei Verkaufs- und Einkaufsrechnungen entspricht dem Buchungsdatum. Das heisst, in Berichten
wie dem Buchungsjournal, in denen eine Spalte Buchungsdatum angezeigt werden kann, erscheint hier im Fall von Rech-
nungen das Rechnungsdatum.

• Bezieht sich ein verbuchter Beleg auf einen Zeitpunkt, der nicht mit dem Buchungsdatum übereinstimmt, so kann dieses
Datum momentan in kivitendo nur unter Bemerkungen erfasst werden.

Möglicherweise wird für solche Fälle in einer späteren Version von kivitendo ein dritter Datumswert für Buchungen erstellt.
(Beispiel: Einkaufsbeleg stammt aus einem früheren Jahr, das bereits buchhaltungstechnisch abgeschlossen wurde, und muss
deshalb später verbucht werden.)

2.17. Konfiguration zur Einnahmenüberschuss-
rechnung/Bilanzierung: EUR

2.17.1. Einführung
kivitendo besaß bis inklusive Version 2.6.3 einen Konfigurationsparameter namens eur, der sich in der Konfigurationsdatei
config/kivitendo.conf (damals noch config/lx_office.conf) befand. Somit galt er für alle Mandanten, die in
dieser Installation benutzt wurden.

Mit der nachfolgenden Version wurde der Parameter zum Einen in die Mandantendatenbank verschoben und dabei auch gleich
in drei Einzelparameter aufgeteilt, mit denen sich das Verhalten genauer steuern lässt.

2.17.2. Konfigurationsparameter
Es gibt drei Parameter, die die Gewinnermittlungsart, Versteuerungsart und die Warenbuchungsmethode regeln:

profit_determination
Dieser Parameter legt die Berechnungsmethode für die Gewinnermittlung fest. Er enthält entweder balance für
Betriebsvermögensvergleich/Bilanzierung oder income für die Einnahmen-Überschuss-Rechnung.

accounting_method
Dieser Parameter steuert die Buchungs- und Berechnungsmethoden für die Versteuerungsart. Er enthält entweder accru-
al für die Soll-Versteuerung oder cash für die Ist-Versteuerung.

inventory_system
Dieser Parameter legt die Warenbuchungsmethode fest. Er enthält entweder perpetual für die Bestandsmethode oder
periodic für die Aufwandsmethode.

Zum Vergleich der Funktionalität bis und nach 2.6.3: eur = 1 bedeutete Einnahmen-Überschuss-Rechnung, Ist-Versteuerung
und Aufwandsmethode. eur = 0 bedeutete hingegen Bilanzierung, Soll-Versteuerung und Bestandsmethode.

Die Konfiguration "eur" unter [system] in der Konfigurationsdatei config/kivitendo.conf wird nun nicht mehr
benötigt und kann entfernt werden. Dies muss manuell geschehen.

2.17.3. Festlegen der Parameter
Beim Anlegen eines neuen Mandanten bzw. einer neuen Datenbank in der Admininstration können diese Optionen nun unab-
hängig voneinander eingestellt werden.

Für die Schweiz sind folgende Einstellungen üblich:

Installation und Grundkonfiguration

41

• Sollversteuerung

• Aufwandsmethode

• Bilanzierung

Diese Einstellungen werden automatisch beim Erstellen einer neuen Datenbank vorausgewählt, wenn in con-
fig/kivitendo.conf unter [system] default_manager = swiss eingestellt ist.

Beim Upgrade bestehender Mandanten wird eur ausgelesen und die Variablen werden so gesetzt, daß sich an der Funktionalität
nichts ändert.

Die aktuelle Konfiguration wird unter Nummernkreise und Standardkonten unter dem neuen Punkt "Einstellungen" (read-only)
angezeigt. Unter System → Mandantenkonfiguration können die Einstellungen auch geändert werden. Dabei ist zu beachten,
dass eine Änderung vorhandene Daten so belässt und damit evtl. die Ergebnisse verfälscht. Dies gilt vor Allem für die Waren-
buchungsmethode (siehe auch Bemerkungen zur Bestandsmethode).

2.17.4. Bemerkungen zur Bestandsmethode

Die Bestandsmethode ist eigentlich eine sehr elegante Methode, funktioniert in kivitendo aber nur unter bestimmten Bedin-
gungen: Voraussetzung ist, daß auch immer alle Einkaufsrechnungen gepflegt werden, und man beim Jahreswechsel nicht mit
einer leeren Datenbank anfängt, da bei jedem Verkauf anhand der gesamten Rechnungshistorie der Einkaufswert der Ware nach
dem FIFO-Prinzip aus den Einkaufsrechnungen berechnet wird.

Die Bestandsmethode kann vom Prinzip her also nur funktioneren, wenn man mit den Buchungen bei Null anfängt, und man
kann auch nicht im laufenden Betrieb von der Aufwandsmethode zur Bestandsmethode wechseln.

2.17.5. Bekannte Probleme

Bei bestimmten Berichten kann man derzeit noch inviduell einstellen, ob man nach Ist- oder Sollversteuerung auswertet, und es
werden im Code Variablen wie $accrual oder $cash gesetzt. Diese Codestellen wurden noch nicht angepasst, sondern nur die,
wo bisher die Konfigurationsvariable $::lx_office_conf{system}->{eur} ausgewertet wurde.

Es fehlen Hilfetext beim Neuanlegen eines Mandanten, was die Optionen bewirken, z.B. mit zwei Standardfällen.

2.18. SKR04 19% Umstellung für innergemein-
schaftlichen Erwerb

2.18.1. Einführung

Die Umsatzsteuerumstellung auf 19% für SKR04 für die Steuerschlüssel "EU ohne USt-ID Nummer" ist erst 2010 erfolgt.
kivitendo beinhaltet ein Upgradeskript, das das Konto 3804 automatisch erstellt und die Steuereinstellungen korrekt einstellt.
Hat der Benutzer aber schon selber das Konto 3804 angelegt, oder gab es schon Buchungen im Zeitraum nach dem 01.01.2007
auf das Konto 3803, wird das Upgradeskript vorsichtshalber nicht ausgeführt, da der Benutzer sich vielleicht schon selbst
geholfen hat und mit seinen Änderungen zufrieden ist. Die korrekten Einstellungen kann man aber auch per Hand ausführen.
Nachfolgend werden die entsprechenden Schritte anhand von Screenshots dargestellt.

Für den Fall, daß Buchungen mit der Steuerschlüssel "EU ohne USt.-IdNr." nach dem 01.01.2007 erfolgt sind, ist davon auszu-
gehen, dass diese mit dem alten Umsatzsteuersatz von 16% gebucht worden sind, und diese Buchungen sollten entsprechend
kontrolliert werden.

2.18.2. Konto 3804 manuell anlegen

Die folgenden Schritte sind notwendig, um das Konto manuell anzulegen und zu konfigurieren. Zuerst wird in System → Kon-
tenübersicht → Konto erfassen das Konto angelegt.

Installation und Grundkonfiguration

42

Installation und Grundkonfiguration

43

Als Zweites muss Steuergruppe 13 für Konto 3803 angepasst werden. Dazu unter System → Steuern → Bearbeiten den Eintrag
mit Steuerschlüssel 13 auswählen und ihn wie im folgenden Screenshot angezeigt anpassen.

Als Drittes wird ein neuer Eintrag mit Steuerschlüssel 13 für Konto 3804 (19%) angelegt. Dazu unter System → Steuern →
Erfassen auswählen und die Werte aus dem Screenshot übernehmen.

Als Nächstes sind alle Konten anzupassen, die als Steuerautomatikkonto die 3803 haben, sodass sie ab dem 1.1.2007 auch
Steuerautomatik auf 3804 bekommen. Dies betrifft in der Standardkonfiguration die Konten 4315 und 4726. Als Beispiel für
4315 müssen Sie dazu unter System → Kontenübersicht → Konten anzeigen das Konto 4315 anklicken und die Einstellungen
wie im Screenshot gezeigt vornehmen.

Installation und Grundkonfiguration

44

Installation und Grundkonfiguration

45

Als Letztes sollte die Steuerliste unter System → Steuern → Bearbeiten kontrolliert werden. Zum Vergleich der Screenshot.

2.19. Verhalten des Bilanzberichts
Bis Version 3.0 wurde "closedto" ("Bücher schließen zum") als Grundlage für das Startdatum benutzt. Schließt man die Bücher
allerdings monatsweise führt dies zu falschen Werten.

In der Mandantenkonfiguration kann man dieses Verhalten genau einstellen indem man:

• weiterhin closed_to benutzt (Default, es ändert sich nichts zu vorher)

• immer den Jahresanfang nimmt (1.1. relativ zum Stichtag)

• immer die letzte Eröffnungsbuchung als Startdatum nimmt

- mit Jahresanfang als Alternative wenn es keine EB-Buchungen gibt

- oder mit "alle Buchungen" als Alternative"

• mit Jahresanfang als Alternative wenn es keine EB-Buchungen gibt

• immer alle Buchungen seit Beginn der Datenbank nimmt

Folgende Hinweise zu den Optionen: Das "Bücher schließen Datum" ist sinnvoll, wenn man nur komplette Jahre schließt. Bei
Wirtschaftsjahr = Kalendarjahr entspricht dies aber auch dem Jahresanfang. "Alle Buchungen" kann z.B. sinnvoll sein wenn
man ohne Jahresabschluß durchbucht. Eröffnungsbuchung mit "alle Buchungen" als Fallback ist z.B. sinnvoll, wenn man am
sich Anfang des zweiten Buchungsjahres befindet, und noch keinen Jahreswechsel und auch noch keine EB-Buchungen hat.
Bei den Optionen mit EB-Buchungen wird vorausgesetzt, daß diese immer am 1. Tag des Wirtschaftsjahres gebucht werden.
Zur Sicherheit wird das Startdatum im Bilanzbericht jetzt zusätzlich zum Stichtag mit angezeigt. Das hilft auch bei der Kon-
trolle für den Abgleich mit der GuV bzw. Erfolgsrechnung.

2.20. Jahresabschluss
Beim Jahresabschluss stehen 2 Methoden zur Verfügung, die in der Buchungskonfiguration der Mandantenkonfiguration einge-
stellt werden können.

Installation und Grundkonfiguration

46

• Standard-Methode.

• Sowohl Bestandskonten wie auch Erfolgskonten werden abgeschlossen

• Es wird ein Konto für das Verbuchen eines Jahresgewinns verwendet und ein zweites Konto für das Verbuchen eines Jah-
resverlusts.

• Bei den Konten für den Jahresabschluss können bei den Standardkonten in der Mandantenkonfiguration nur Aktiva-Kon-
ten ausgewählt werden.

• Der Jahresgewinn oder -verlust wird sowohl bei den Jahresabschlussbuchungen wie auch bei den Eröffnungsbuchungen
verbucht.

• Einfach-Methode.

• Nur Bestandskonten werden abgeschlossen

• Für das Verbuchen eines Jahresgewinns oder -verlusts wird das gleiche Konto verwendet.

• Bei den Konten für den Jahresabschluss können bei den Standardkonten in der Mandantenkonfiguration alle Konten aus-
gewählt werden.

• Der Jahresgewinn oder -verlust wird nur bei den Eröffnungsbuchungen verbucht.

2.21. Erfolgsrechnung
Seit der Version 3.4.1 existiert in kivitendo der Bericht Erfolgsrechnung.

Die Erfolgsrechnung kann in der Mandantenkonfiguration unter Features an- oder abgeschaltet werden. Mit der Einstellung
default_manager = swiss in der config/kivitendo.conf wird beim neu Erstellen einer Datenbank automa-
tisch die Anzeige der Erfolgsrechnung im Menü Berichte ausgewählt und ersetzt dort die GUV.

Im Gegensatz zur GUV werden bei der Erfolgsrechnung sämtliche Aufwands- und Erlöskonten einzeln aufgelistet (analog zur
Bilanz), sortiert nach ERTRAG und AUFWAND.

Bei den Konteneinstellungen muss bei jedem Konto, das in der Erfolgsrechnung erscheinen soll, unter Sonstige Ein-
stellungen/Erfolgsrechnung entweder 01.Ertrag oder 06.Aufwand ausgewählt werden.

Wird bei einem Erlöskonto 06.Aufwand ausgewählt, so wird dieses Konto als Aufwandsminderung unter AUFWAND auf-
gelistet.

Wird bei einem Aufwandskonto 01.Ertrag ausgewählt, so wird dieses Konto als Ertragsminderung unter ERTRAG aufge-
listet.

Soll bei einer bereits bestehenden Buchhaltung in Zukunft zusätzlich die Erfolgsrechnung als Bericht verwendet werden, so
müssen die Einstellungen zu allen Erlös- und Aufwandskonten unter Sonstige Einstellungen/Erfolgsrechnung
überprüft und allenfalls neu gesetzt werden.

2.22. Rundung in Verkaufsbelegen
In der Schweiz hat die kleinste aktuell benutzte Münze den Wert von 5 Rappen (0.05 CHF).

Auch wenn im elektronischen Zahlungsverkehr Beträge mit einer Genauigkeit von 0.01 CHF verwendet werden können, ist es
trotzdem nach wie vor üblich, Rechnungen mit auf 0.05 CHF gerundeten Beträgen auszustellen.

In kivitendo kann seit der Version 3.4.1 die Einstellung für eine solche Rundung pro Mandant / Datenbank festgelegt werden.

Die Einstellung wird beim Erstellen der Datenbank bei Genauigkeit festgelegt. Sie kann anschliessend über das Webinter-
face von kivitendo nicht mehr verändert werden.

Installation und Grundkonfiguration

47

Abhängig vom Wert für default_manager in config/kivitendo.conf werden dabei folgende Werte voreingestellt:

• 0.05 (default_manager = swiss)

• 0.01 (default_manager = german)

Der Wert wird in der Datenbank in der Tabelle defaults in der Spalte precision gespeichert.

In allen Verkaufsangeboten, Verkaufsaufträgen, Verkaufsrechnungen und Verkaufsgutschriften wird der Endbetrag inkl.
MWST gerundet, wenn dieser nicht der eingestellten Genauigkeit entspricht.

Beim Buchen einer Verkaufsrechnung wird der Rundungsbetrag automatisch auf die in der Mandantenkonfiguration festgeleg-
ten Standardkonten für Rundungserträge bzw. Rundungsaufwendungen gebucht.

(Die berechnete MWST wird durch den Rundungsbetrag nicht mehr verändert.)

Die in den Druckvorlagen zur Verfügung stehenden Variablen quototal, ordtotal bzw. invtotal enthalten den gerun-
deten Betrag.

Achtung: Werden Verkaufsbelege in anderen Währungen als der Standardwährung erstellt, so muss in kivitendo ab Version
3.4.1 die Genauigkeit 0.01 verwendet werden.

Das heisst, Firmen in der Schweiz, die teilweise Verkaufsrechnungen in Euro oder anderen Währungen erstellen wollen, müs-
sen beim Erstellen der Datenbank als Genauigkeit 0.01 wählen und können zur Zeit die 5er Rundung noch nicht nutzen.

2.23. Einstellungen pro Mandant
Einige Einstellungen können von einem Benutzer mit dem Recht "Administration (Für die Verwaltung der aktuellen Instanz
aus einem Userlogin heraus)" gemacht werden. Diese Einstellungen sind dann für die aktuellen Mandanten-Datenbank gültig.
Die Einstellungen sind unter System → Mandantenkonfiguration erreichbar.

Bitte beachten Sie die Hinweise zu den einzelnen Einstellungen. Einige Einstellungen sollten nicht ohne Weiteres im laufenden
Betrieb geändert werden (siehe auch Bemerkungen zu Bestandsmethode).

Die Einstellungen show_bestbefore und payments_changeable aus dem Abschnitt features und die Einstellun-
gen im Abschnitt datev_check (sofern schon vorhanden) der kivitendo-Konfigurationsdatei werden bei einem Datenban-
kupdate einer älteren Version automatisch übernommen. Diese Einträge können danach aus der Konfigurationsdatei entfernt
werden.

2.24. kivitendo ERP verwenden
Nach erfolgreicher Installation ist der Loginbildschirm unter folgender URL erreichbar:

http://localhost/kivitendo-erp/login.pl

Die Administrationsseite erreichen Sie unter:

http://localhost/kivitendo-erp/controller.pl?action=Admin/login

http://localhost/kivitendo-erp/login.pl
http://localhost/kivitendo-erp/controller.pl?action=Admin/login

48

3
Features und Funktionen

3.1. Wiederkehrende Rechnungen

3.1.1. Einführung
Wiederkehrende Rechnungen werden als normale Aufträge definiert und konfiguriert, mit allen dazugehörigen Kunden- und
Artikelangaben. Die konfigurierten Aufträge werden später automatisch in Rechnungen umgewandelt, so als ob man den
Workflow benutzen würde, und auch die Auftragsnummer wird übernommen, sodass alle wiederkehrenden Rechnungen, die
aus einem Auftrag erstellt wurden, später leicht wiederzufinden sind.

3.1.2. Konfiguration
Um einen Auftrag für wiederkehrende Rechnung zu konfigurieren, findet sich beim Bearbeiten des Auftrags ein neuer Knopf
"Konfigurieren", der ein neues Fenster öffnet, in dem man die nötigen Parameter einstellen kann. Hinter dem Knopf wird
außerdem noch angezeigt, ob der Auftrag als wiederkehrende Rechnung konfiguriert ist oder nicht.

Folgende Parameter kann man konfigurieren:

Status
Bei aktiven Rechnungen wird automatisch eine Rechnung erstellt, wenn die Periodizität erreicht ist (z.B. am Anfang eines
neuen Monats).

Ist ein Auftrag nicht aktiv, so werden für ihn auch keine wiederkehrenden Rechnungen erzeugt. Stellt man nach längerer
nicht-aktiver Zeit einen Auftrag wieder auf aktiv, wird beim nächsten Periodenwechsel für alle Perioden, seit der letzten
aktiven Periode, jeweils eine Rechnung erstellt. Möchte man dies verhindern, muss man vorher das Startdatum neu setzen.

Für gekündigte Aufträge werden nie mehr Rechnungen erstellt. Man kann sich diese Aufträge aber gesondert in den
Berichten anzeigen lassen.

Periodizität
Ob monatlich, quartalsweise oder jährlich auf neue Rechnungen überprüft werden soll. Für jede Periode seit dem Startda-
tum wird überprüft, ob für die Periode (beginnend immer mit dem ersten Tag der Periode) schon eine Rechnung erstellt
wurde. Unter Umständen können bei einem Startdatum in der Vergangenheit gleich mehrere Rechnungen erstellt werden.

Buchen auf
Das Forderungskonto, in der Regel "Forderungen aus Lieferungen und Leistungen". Das Gegenkonto ergibt sich aus den
Buchungsgruppen der betreffenden Waren.

Startdatum
ab welchem Datum auf Rechnungserstellung geprüft werden soll

Enddatum
ab wann keine Rechnungen mehr erstellt werden sollen

Automatische Verlängerung um x Monate
Sollen die wiederkehrenden Rechnungen bei Erreichen des eingetragenen Enddatums weiterhin erstellt werden, so kann
man hier die Anzahl der Monate eingeben, um die das Enddatum automatisch nach hinten geschoben wird.

Features und Funktionen

49

Drucken
Sind Drucker konfiguriert, so kann man sich die erstellten Rechnungen auch gleich ausdrucken lassen.

Nach Erstellung der Rechnungen kann eine E-Mail mit Informationen zu den erstellten Rechnungen verschickt werden. Konfi-
guriert wird dies in der Konfigurationsdatei config/kivitendo.conf im Abschnitt [periodic_invoices].

3.1.3. Spezielle Variablen
Um die erzeugten Rechnungen individualisieren zu können, werden beim Umwandeln des Auftrags in eine Rechnung einige
speziell formatierte Variablen durch für die jeweils aktuelle Abrechnungsperiode gültigen Werte ersetzt. Damit ist es möglich,
z.B. den Abrechnungszeitraum explizit auszuweisen. Eine Variable hat dabei die Syntax <%variablenname%>.

Sofern es sich um eine Datumsvariable handelt, kann das Ausgabeformat weiter bestimmt werden, indem an den
Variablennamen Formatoptionen angehängt werden. Die Syntax sieht dabei wie folgt aus: <%variablenname
FORMAT=Formatinformation%>. Die zur verfügung stehenden Formatinformationen werden unten genauer beschrieben.

Diese Variablen können auch beim automatischen Versand der erzeugten Rechnungen per E-Mail genutzt werden, indem sie in
den Feldern für den Betreff oder die Nachricht verwendet werden.

Diese Variablen werden in den folgenden Elementen des Auftrags ersetzt:

• Bemerkungen

• Interne Bemerkungen

• Vorgangsbezeichnung

• In den Beschreibungs- und Langtextfeldern aller Positionen

Die zur Verfügung stehenden Variablen sind die Folgenden:

<%current_quarter%>, <%previous_quarter%>, <%next_quarter%>
Aktuelles, vorheriges und nächstes Quartal als Zahl zwischen 1 und 4.

<%current_month%>, <%previous_month%>, <%next_month%>
Aktueller, vorheriger und nächster Monat als Zahl zwischen 1 und 12.

<%current_month_long%>, <%previous_month_long%>, <%next_month_long%>
Aktueller, vorheriger und nächster Monat als Name (Januar, Februar etc.).

<%current_year%>, <%previous_year%>, <%next_year%>
Aktuelles, vorheriges und nächstes Jahr als vierstellige Jahreszahl (2013 etc.).

<%period_start_date%>, <%period_end_date%>
Formatiertes Datum des ersten und letzten Tages im Abrechnungszeitraum (z.B. bei quartalsweiser Abrechnung und im
ersten Quartal von 2013 wären dies der 01.01.2013 und 31.03.2013).

Die invidiuellen Formatinformationen bestehen aus Paaren von Prozentzeichen und einem Buchstaben, welche beide zusam-
men durch den dazugehörigen Wert ersetzt werden. So wird z.B. %Y durch das viertstellige Jahr ersetzt. Alle möglichen Platz-
halter sind:

%a
Der abgekürzte Wochentagsname.

%A
Der ausgeschriebene Wochentagsname.

%b
Der abgekürzte Monatsname.

%B
Der ausgeschriebene Monatsname.

Features und Funktionen

50

%C
Das Jahrhundert (Jahr/100) als eine zweistellige Zahl.

%d
Der Monatstag als Zahl zwischen 01 und 31.

%D
Entspricht %m/%d/%y (amerikanisches Datumsformat).

%e
Wie %d (Monatstag als Zahl zwischen 1 und 31), allerdings werden führende Nullen durch Leerzeichen ersetzt.

%F
Entspricht %Y-%m-%d (das ISO-8601-Datumsformat).

%j
Der Tag im Jahr als Zahl zwischen 001 und 366 inklusive.

%m
Der Monat als Zahl zwischen 01 und 12 inklusive.

%u
Der Wochentag als Zahl zwischen 1 und 7 inklusive, wobei die 1 dem Montag entspricht.

%U
Die Wochennummer als Zahl zwischen 00 und 53 inklusive, wobei der erste Sonntag im Jahr das Startdatum von Woche
01 ist.

%V
Die ISO-8601:1988-Wochennummer als Zahl zwischen 01 und 53 inklusive, wobei Woche 01 die erste Woche, von der
mindestens vier Tage im Jahr liegen; Montag ist erster Tag der Woche.

%w
Der Wochentag als Zahl zwischen 0 und 6 inklusive, wobei die 0 dem Sonntag entspricht.

%W
Die Wochennummer als Zahl zwischen 00 und 53 inklusive, wobei der erste Montag im Jahr das Startdatum von Woche
01 ist.

%y
Das Jahr als zweistellige Zahl zwischen 00 und 99 inklusive.

%Y
Das Jahr als vierstellige Zahl.

%%
Das Prozentzeichen selber.

Anwendungsbeispiel für die Ausgabe, von welchem Monat und Jahr bis zu welchem Monat und Jahr die aktuelle
Abrechnungsperiode dauert: Abrechnungszeitrum: <%period_start_date FORMAT=%m/%Y%> bis <
%period_end_date FORMAT=%m/%Y%>

Beim automatischen Versand der Rechnugen via E-Mail können neben diesen speziellen Variablen auch einige Eigenschaf-
ten der Rechnung selber als Variablen im Betreff & dem Text der E-Mails genutzt werden. Beispiele sind <%invnumber%>
für die Rechnungsnummber oder <transaction_description%> für die Vorgangsbezeichnung. Diese Variablen stehen
beim Erzeugen der Rechnung logischerweise noch nicht zur Verfügung.

3.1.4. Auflisten
Unter Verkauf->Berichte->Aufträge finden sich zwei neue Checkboxen, "Wiederkehrende Rechnungen aktiv" und "Wieder-
kehrende Rechnungen inaktiv", mit denen man sich einen Überglick über die wiederkehrenden Rechnungen verschaffen kann.

Features und Funktionen

51

3.1.5. Erzeugung der eigentlichen Rechnungen
Die zeitliche und periodische Überprüfung, ob eine wiederkehrende Rechnung automatisch erstellt werden soll, geschieht
durch den Task-Server, einen externen Dienst, der automatisch beim Start des Servers gestartet werden sollte.

3.1.6. Erste Rechnung für aktuellen Monat erstellen
Will man im laufenden Monat eine monatlich wiederkehrende Rechnung inkl. des laufenden Monats starten, stellt man das
Startdatum auf den Monatsanfang und wartet ein paar Minuten, bis der Task-Server den neu konfigurieren Auftrag erkennt und
daraus eine Rechnung generiert hat. Alternativ setzt man das Startdatum auf den Monatsersten des Folgemonats und erstellt die
erste Rechnung direkt manuell über den Workflow.

3.2. Bankerweiterung

3.2.1. Einführung
Die Beschreibung der Bankerweiterung befindet sich derzeit noch im Wiki und soll von dort später hierhin übernommen wer-
den:

https://www.kivitendo.de/redmine/projects/forum/wiki/Bankerweiterung 1

3.3. Dokumentenvorlagen und verfügbare
Variablen

3.3.1. Einführung
Dies ist eine Auflistung der Standard-Dokumentenvorlagen und aller zur Bearbeitung verfügbaren Variablen. Eine Variable
wird in einer Vorlage durch ihren Inhalt ersetzt, wenn sie in der Form <%variablenname%> verwendet wird. Für LaTeX-
und HTML-Vorlagen kann man die Form dieser Tags auch verändern (siehe Anfang und Ende der Tags verändern [52]).

kivitendo unterstützt LaTeX-, HTML- und OpenDocument-Vorlagen. Sofern es nicht ausdrücklich eingeschränkt wird, gilt das
im Folgenden gesagte für alle Vorlagenarten.

Insgesamt sind technisch gesehen eine ganze Menge mehr Variablen verfügbar als hier aufgelistet werden. Die meisten davon
können allerdings innerhalb einer solchen Vorlage nicht sinnvoll verwendet werden. Wenn eine Auflistung dieser Variablen
gewollt ist, so kann diese wie folgt erhalten werden:

• SL/Form.pm öffnen und am Anfang die Zeile "use Data::Dumper;" einfügen.

• In Form.pm die Funktion parse_template suchen und hier die Zeile print(STDERR Dumper($self)); einfügen.

• Einmal per Browser die gewünschte Vorlage "benutzen", z.B. ein PDF für eine Rechnung erzeugen.

• Im error.log Apache steht die Ausgabe der Variablen $self in der Form 'key' => 'value',. Alle keys sind
verfügbar.

3.3.2. Variablen ausgeben
Um eine Variable auszugeben, müssen sie einfach nur zwischen die Tags geschrieben werden, also z.B. <%variablenna-
me%>.

Optional kann man auch mit Leerzeichen getrennte Flags angeben, die man aber nur selten brauchen wird. Die Syntax sieht
also so aus: <%variablenname FLAG1 FLAG2%>. Momentan werden die folgenden Flags unterstützt:

1 https://www.kivitendo.de/redmine/projects/forum/wiki/Bankerweiterung

https://www.kivitendo.de/redmine/projects/forum/wiki/Bankerweiterung
https://www.kivitendo.de/redmine/projects/forum/wiki/Bankerweiterung

Features und Funktionen

52

• NOFORMAT gilt nur für Zahlenwerte und gibt den Wert ohne Formatierung, also ohne Tausendertrennzeichen mit mit einem
Punkt als Dezimaltrennzeichen aus. Nützlich z.B., wenn damit in der Vorlage z.B. von LaTeX gerechnet werden soll.

• NOESCAPE unterdrückt das Escapen von Sonderzeichen für die Vorlagensprache. Wenn also in einer Variablen bereits gül-
tiger LaTeX-Code steht und dieser von LaTeX auch ausgewertet und nicht wortwörtlich angezeigt werden soll, so ist dieses
Flag sinnvoll.

Beispiel:

<%quototal NOFORMAT%>

3.3.3. Verwendung in Druckbefehlen

In der Admininstration können Drucker definiert werden. Auch im dort eingebbaren Druckbefehl können die hier aufgeliste-
ten Variablen und Kontrollstrukturen verwendet werden. Ihr Inhalt wird dabei nach den Regeln der gängigen Shells formatiert,
sodass Sonderzeichen wie `...` nicht zu unerwünschtem Verhalten führen.

Dies erlaubt z.B. die Definition eines Faxes als Druckerbefehl, für das die Telefonnummer eines Ansprechpartners als Teil der
Kommandozeile verwendet wird. Für ein fiktives Kommando könnte das z.B. wie folgt aussehen:

send_fax --number <%if cp_phone2%><%cp_phone2%><%else%><%cp_phone1%><%end%>

3.3.4. Anfang und Ende der Tags verändern

Der Standardstil für Tags sieht vor, dass ein Tag mit dem Kleinerzeichen und einem Prozentzeichen beginnt und mit dem Pro-
zentzeichen und dem Größerzeichen endet, beispielsweise <%customer%>. Da diese Form aber z.B. in LaTeX zu Problemen
führen kann, weil das Prozentzeichen dort Kommentare einleitet, kann pro HTML- oder LaTeX-Dokumentenvorlage der Stil
umgestellt werden.

Dazu werden in die Datei Zeilen geschrieben, die mit dem für das Format gültigen Kommentarzeichen anfangen, dann con-
fig: enthalten, die entsprechende Option setzen und bei HTML-Dokumentenvorlagen mit dem Kommentarendzeichen enden.
Beispiel für LaTeX:

% config: tag-style=($ $)

Dies würde kivitendo dazu veranlassen, Variablen zu ersetzen, wenn sie wie folgt aussehen: ($customer$). Das äquivalen-
te Beispiel für HTML-Dokumentenvorlagen sieht so aus:

<!-- config: tag-style=($ $) -->

3.3.5. Zuordnung von den Dateinamen zu den Funktio-
nen

Diese folgende kurze Auflistung zeigt, welche Vorlage bei welcher Funktion ausgelesen wird. Dabei ist die Dateiendung
".ext" geeignet zu ersetzen: ".tex" für LaTeX-Vorlagen und ".odt" für OpenDocument-Vorlagen.

bin_list.ext
Lagerliste

check.ext
?

invoice.ext
Rechnung

packing_list.ext
Packliste

Features und Funktionen

53

pick_list.ext
Sammelliste

purchase_delivery_order.ext
Lieferschein (Einkauf)

purcharse_order.ext
Bestellung an Lieferanten

request_quotation.ext
Anfrage an Lieferanten

sales_delivery_order.ext
Lieferschein (Verkauf)

sales_order.ext
Bestellung

sales_quotation.ext
Angebot an Kunden

zahlungserinnerung.ext
Mahnung (Dateiname im Programm konfigurierbar)

zahlungserinnerung_invoice.ext
Rechnung über Mahngebühren (Dateiname im Programm konfigurierbar)

3.3.6. Sprache, Drucker und E-Mail
Angeforderte Sprache und Druckerkürzel in den Dateinamen mit eingearbeitet. So wird aus der Vorlage sales_order.ext
bei Sprache de und Druckerkürzel lpr2 der Vorlagenname sales_order_de_lpr2.ext. Zusätzlich können für E-Mails
andere Vorlagen erstellt werden, diese bekommen dann noch das Kürzel _email, der vollständige Vorlagenname wäre dann
sales_order_email_de_lpr2.ext. In allen Fällen kann eine Standarddatei default.ext hinterlegt werden. Diese
wird verwendet, wenn keine der anderen Varianten gefunden wird.

Die vollständige Suchreihenfolge für einen Verkaufsauftrag mit der Sprache "de" und dem Drucker "lpr2", der per E-Mail im
Format PDF verschickt wird, ist:

1. sales_order_email_de_lpr2.tex

2. sales_order_de_lpr2.tex

3. sales_order.tex

4. default.tex

Die kurzen Varianten dieser Vorlagentitel müssen dann entweder Standardwerte anzeigen, oder die angeforderten Werte selbst
auswerten, siehe dazu Metainformationen zur angeforderten Vorlage [53].

3.3.7. Allgemeine Variablen, die in allen Vorlagen vor-
handen sind

3.3.7.1. Metainformationen zur angeforderten Vorlage

Diese Variablen liefern Informationen darüber welche Variante einer Vorlage der Benutzer angefragt hat. Sie sind nützlich für
Vorlagenautoren, die aus einer zentralen Layoutvorlage die einzelnen Formulare einbinden möchten.

template_meta.formname
Basisname der Vorlage. Identisch mit der Zurordnung zu den Dateinamen ohne die Erweiterung. Ein Verkaufsauftrag ent-
hält hier sales_order.

Features und Funktionen

54

template_meta.language.description
Beschreibung der verwendeten Sprache

template_meta.language.template_code
Vorlagenkürzel der verwendeten Sprache, identisch mit dem Kürzel das im Dateinamen verwendetet wird.

template_meta.language.output_numberformat
Zahlenformat der verwendeten Sprache in der Form "1.000,00". Experimentell! Nur interessant für Vorlagen die mit
unformatierten Werten arbeiten.

template_meta.language.output_dateformat
Datumsformat der verwendeten Sprache in der Form "dd.mm.yyyy". Experimentell! Nur interessant für Vorlagen die
mit unformatierten Werten arbeiten.

template_meta.format
Das angeforderte Format. Kann im Moment die Werte pdf, postscript, html, opendocument,
opendocument_pdf und excel enthalten.

template_meta.extension
Dateierweiterung, wie im Dateinamen. Wird aus format entschieden.

template_meta.media
Ausgabemedium. Kann zur Zeit die Werte screen für Bildschirm, email für E-Mail (triggert das _email Kürzel im
Dateinamen), printer für Drucker, und queue für Warteschlange enthalten.

template_meta.printer.description
Beschreibung des ausgewählten Druckers

template_meta.printer.template_code
Vorlagenürzel des ausgewählten Druckers, identisch mit dem Kürzel das im Dateinamen verwendetet wird.

template_meta.tmpfile
Datei-Prefix für temporäre Dateien.

3.3.7.2. Stammdaten von Kunden und Lieferanten

account_number
Kontonummer

bank
Name der Bank

bank_code
Bankleitzahl

bic
Bank-Identifikations-Code (Bank Identifier Code, BIC)

business
Kunden-/Lieferantentyp

city
Stadt

contact
Kontakt

country
Land

c_vendor_id
Lieferantennummer beim Kunden (nur Kunden)

Features und Funktionen

55

v_customer_id
Kundennummer beim Lieferanten (nur Lieferanten)

cp_email
Email des Ansprechpartners

cp_givenname
Vorname des Ansprechpartners

cp_greeting
Anrede des Ansprechpartners

cp_name
Name des Ansprechpartners

cp_phone1
Telefonnummer 1 des Ansprechpartners

cp_phone2
Telefonnummer 2 des Ansprechpartners

cp_title
Titel des Ansprechpartners

creditlimit
Kreditlimit

customeremail
Email des Kunden; nur für Kunden

customerfax
Faxnummer des Kunden; nur für Kunden

customernotes
Bemerkungen beim Kunden; nur für Kunden

customernumber
Kundennummer; nur für Kunden

customerphone
Telefonnummer des Kunden; nur für Kunden

discount
Rabatt

email
Emailadresse

fax
Faxnummer

gln
GLN (Globale Lokationsnummer)

greeting
Anrede

homepage
Homepage

iban
Internationale Kontonummer (International Bank Account Number, IBAN)

Features und Funktionen

56

language
Sprache

name
Firmenname

natural_person
Flag "natürliche Person"; Siehe auch Hinweise zur Anrede [69]

payment_description
Name der Zahlart

payment_terms
Zahlungskonditionen

phone
Telefonnummer

shiptocity
Stadt (Lieferadresse) *

shiptocontact
Kontakt (Lieferadresse) *

shiptocountry
Land (Lieferadresse) *

shiptodepartment_1
Abteilung 1 (Lieferadresse) *

shiptodepartment_2
Abteilung 2 (Lieferadresse) *

shiptoemail
Email (Lieferadresse) *

shiptofax
Fax (Lieferadresse) *

shiptogln
GLN (Globale Lokationsnummer) (Lieferadresse) *

shiptoname
Firmenname (Lieferadresse) *

shiptophone
Telefonnummer (Lieferadresse) *

shiptostreet
Straße und Hausnummer (Lieferadresse) *

shiptozipcode
Postleitzahl (Lieferadresse) *

street
Straße und Hausnummer

taxnumber
Steuernummer

ustid
Umsatzsteuer-Identifikationsnummer

Features und Funktionen

57

vendoremail
Email des Lieferanten; nur für Lieferanten

vendorfax
Faxnummer des Lieferanten; nur für Lieferanten

vendornotes
Bemerkungen beim Lieferanten; nur für Lieferanten

vendornumber
Lieferantennummer; nur für Lieferanten

vendorphone
Telefonnummer des Lieferanten; nur für Lieferanten

zipcode
Postleitzahl

Anmerkung

Anmerkung: Sind die shipto*-Felder in den Stammdaten nicht eingetragen, so haben die Variablen shipto*
den gleichen Wert wie die die entsprechenden Variablen der Lieferdaten. Das bedeutet, dass sich einige ship-
to*-Variablen so nicht in den Stammdaten wiederfinden sondern schlicht Kopien der Lieferdatenvariablen sind
(z.B. shiptocontact).

3.3.7.3. Informationen über den Bearbeiter

employee_address
Adressfeld

employee_businessnumber
Firmennummer

employee_company
Firmenname

employee_co_ustid
Usatzsteuer-Identifikationsnummer

employee_duns
DUNS-Nummer

employee_email
Email

employee_fax
Fax

employee_name
voller Name

employee_signature
Signatur

employee_taxnumber
Steuernummer

employee_tel
Telefonnummer

Features und Funktionen

58

3.3.7.4. Informationen über den Verkäufer

salesman_address
Adressfeld

salesman_businessnumber
Firmennummer

salesman_company
Firmenname

salesman_co_ustid
Usatzsteuer-Identifikationsnummer

salesman_duns
DUNS-Nummer

salesman_email
Email

salesman_fax
Fax

salesman_name
voller Name

salesman_signature
Signatur

salesman_taxnumber
Steuernummer

salesman_tel
Telefonnummer

3.3.7.5. Variablen für die einzelnen Steuern

tax
Steuer

taxbase
zu versteuernder Betrag

taxdescription
Name der Steuer

taxrate
Steuersatz

3.3.7.6. Variablen für Lieferbedingungen

delivery_term
Datenbank-Objekt der Lieferbedingung

delivery_term.description
Beschreibung der Lieferbedingung

delivery_term.description_long
Langtext bzw. übersetzter Langtext der Lieferbedingung

Features und Funktionen

59

3.3.7.7. Informationen über abweichende Rechnungsadressen (nur
Verkaufsbelege)

Abweichende Rechnungsadressen gibt es nur in Verkaufsbelegen. Die entsprechenden Variablen sind nur dann mit Inhalt
gefüllt, wenn im Beleg eine abweichende Rechnungsadresse ausgewählt wurde. Ob eine Adresse überhaupt ausgewählt wurde,
kann über die Variable billing_address_id getestet werden, die die Datenbank-ID der abweichenden Rechnungsadresse
enthält, wenn eine ausgewählt ist.

Die Variablennamen starten alle mit dem Präfix billing_address_ und heißen anschließend so, wie ihre Pendants aus der
Standard-Rechnungsadresse des Kunden. Beispiel: die Postleitzahl, die in der normalen Rechnungsadresse in zipcode steht,
steht für die abweichende Rechnungsadresse in billing_address_zipcode.

Die folgenden Variablen stehen so zur Verfügung: billing_address_name, billing_address_department_1,
billing_address_department_2, billing_address_contact, billing_address_street,
billing_address_zipcode, billing_address_city, billing_address_country,
billing_address_gln, billing_address_email, billing_address_phone und
billing_address_fax.

3.3.8. Variablen in Rechnungen

3.3.8.1. Allgemeine Variablen

creditremaining
Verbleibender Kredit

currency
Währung

cusordnumber
Bestellnummer beim Kunden

deliverydate
Lieferdatum

duedate
Fälligkeitsdatum

globalprojectnumber
Projektnummer des ganzen Beleges

globalprojectdescription
Projekbeschreibung des ganzen Beleges

intnotes
Interne Bemerkungen

invdate
Rechnungsdatum

invnumber
Rechnungsnummer

invtotal
gesamter Rechnungsbetrag

notes
Bemerkungen der Rechnung

orddate
Auftragsdatum

Features und Funktionen

60

ordnumber
Auftragsnummer, wenn die Rechnung aus einem Auftrag erstellt wurde

payment_description
Name der Zahlart

payment_terms
Zahlungskonditionen

quodate
Angebotsdatum

quonumber
Angebotsnummer

rounding
Betrag, um den invtotal gerundet wurde (kann positiv oder negativ sein)

shippingpoint
Versandort

shipvia
Transportmittel

subtotal
Zwischensumme aller Posten ohne Steuern

total
Restsumme der Rechnung (Summe abzüglich bereits bezahlter Posten)

transaction_description
Vorgangsbezeichnung

transdate
Auftragsdatum wenn die Rechnung aus einem Auftrag erstellt wurde

3.3.8.2. Variablen für die schweizer QR-Rechnung

Diese Variablen können mit dem LaTeX Modul qrbill verwendet werden: https://ctan.org/pkg/qrbill?lang=de

Für die Erstellung von QR-Rechnungen mit OpenDocument Vorlagen siehe: Abschnitt 2.15, „OpenDocument-Vorlagen“ [36]

qrbill_iban
IBAN/QR-IBAN des Rechnungsstellers, aus System → Bankkonten

qrbill_biller_countrycode
Länderkürzel des Rechnungsstellers gem. ISO 3166, aus Mandantenkonfiguration → Firmenname und -adresse

qrbill_customer_countrycode
Länderkürzel des Rechnungsempfängers gem. ISO 3166, aus der jeweiligen Rechnung

qrbill_amount
Betrag für die QR-Rechnung (Zahl ohne Tausendertrennzeichen mit zwei Nachkommastellen), entsprechend total

qr_reference
QR-Referenz der jeweiligen Rechnung, sofern in der Mandantenkonfiguration → Features → Variante QR-IBAN mit QR-
Referenz erzeugen aktiviert ist

3.3.8.3. Variablen für jeden Posten auf der Rechnung

bin
Stellage

https://ctan.org/pkg/qrbill?lang=de

Features und Funktionen

61

description
Artikelbeschreibung

cusordnumber_oe
Bestellnummer des Kunden aus dem Auftrag, aus dem der Posten ursprünglich stammt (nur Verkauf)

discount
Rabatt als Betrag

discount_sub
Zwischensumme mit Rabatt

donumber_do
Lieferscheinnummer des Lieferscheins, aus dem die Position ursprünglich stammt, wenn die Rechnung im Rahmen des
Workflows aus einem Lieferschein erstellt wurde.

drawing
Zeichnung

ean
EAN-Code

image
Grafik

linetotal
Zeilensumme (Anzahl * Einzelpreis)

longdescription
Langtext, vorbelegt mit dem Feld Bemerkungen der entsprechenden Ware

microfiche
Mikrofilm

netprice
Alternative zu sellprice, aber netprice entspricht dem effektiven Einzelpreis und beinhaltet Zeilenrabatt und Preis-
faktor. netprice wird rückgerechnet aus Zeilensumme / Menge. Diese Variable ist nützlich, wenn man den gewährten
Rabatt in der Druckvorlage nicht anzeigen möchte, aber Menge * Einzelpreis trotzdem die angezeigte Zeilensumme erge-
ben soll. netprice hat nichts mit Netto/Brutto im Sinne von Steuern zu tun.

nodiscount_linetotal
Zeilensumme ohne Rabatt

nodiscount_sub
Zwischensumme ohne Rabatt

number
Artikelnummer

ordnumber_oe
Auftragsnummer des Originalauftrags, aus dem der Posten ursprünglich stammt. Nützlich, wenn die Rechnung aus meh-
reren Lieferscheinen zusammengefasst wurde, oder wenn zwischendurch eine Sammelauftrag aus mehreren Aufträgen
erstellt wurde. In letzterem Fall wird die unsprüngliche Auftragsnummer angezeigt.

p_discount
Rabatt in Prozent

partnotes
Die beim Artikel gespeicherten Bemerkungen

partsgroup
Warengruppe

Features und Funktionen

62

price_factor
Der Preisfaktor als Zahl, sofern einer eingestellt ist

price_factor_name
Der Name des Preisfaktors, sofern einer eingestellt ist

projectnumber
Projektnummer

projectdescription
Projektbeschreibung

qty
Anzahl

reqdate
Lieferdatum

runningnumber
Position auf der Rechnung (1, 2, 3...)

sellprice
Verkaufspreis

serialnumber
Seriennummer

tax_rate
Steuersatz

transdate_do
Datum des Lieferscheins, wenn die Rechnung im Rahmen des Workflows aus einem Lieferschein stammte.

transdate_oe
Datum des Auftrags, wenn die Rechnung im Rahmen des Workflows aus einem Auftrag erstellt wurde. Wenn es Samme-
laufträge gab wird das Datum des ursprünglichen Auftrags genommen.

transdate_quo
Datum des Angebots, wenn die Position im Rahmen des Workflows aus einem Angebot stammte.

unit
Einheit

weight
Gewicht

Für jeden Posten gibt es ein Unterarray mit den Informationen über Lieferanten und Lieferantenartikelnummer, Kunde und
Kundenartikelnummer und Kunden- bzw. Lieferantentyp und zugehöriger Artikelnummer mit Beschreibung und Langtext.
Diese müssen jeweils mit einer foreach-Schleife ausgegeben werden, da für jeden Artikel mehrere Lieferanten- und Kun-
deninformationen bzw. kunden- bzw. lieferantenspezifische Informationen hinterlegt sein können. Die Variablen dafür lauten:

make
Lieferant

model
Lieferantenartikelnummer

mm_part_description
Lieferantenartikelbeschreibung

mm_part_longdescription
Lieferantenartikelbeschreibung (Langtext)

Features und Funktionen

63

customer_make
Kunde

customer_model
Kundenartikelnummer

cm_part_description
Kundenartikelbeschreibung

cm_part_longdescription
Kundenartikelbeschreibung (Langtext)

business_make
Kunden-/Lieferantentyp

business_model
Kunden-/Lieferantentyp-spezifische Artikelnummer

bm_part_description
Kunden-/Lieferantentyp-spezifische Artikelbeschreibung

bm_part_longdescription
Kunden-/Lieferantentyp-spezifische Artikelbeschreibung (Langtext)

3.3.8.4. Benutzerdefinierte Variablen für jeden Posten auf der Rech-
nung

Für jeden Posten stehen auch die benutzerdefinierten Variablen zum Artikel zur Verfügung. Ihre Namen bestehen aus dem Prä-
fix ic_cvar_ und dem vom Benutzer festgelegten Variablennamen.

Ebenso stehen die benutzerdefinierten Variablen zum positionsbezogenen Projekt unter dem Namen mit dem Präfix
project_cvar_ und dem vom Benutzer festgelegten Variablennamen zur Verfügung.

3.3.8.5. Variablen für die einzelnen Zahlungseingänge

payment
Betrag

paymentaccount
Konto

paymentdate
Datum

paymentmemo
Memo

paymentsource
Beleg

3.3.8.6. Benutzerdefinierte Kunden- und Lieferantenvariablen

Die vom Benutzer definierten Variablen für Kunden und Lieferanten stehen beim Ausdruck von Einkaufs- und Verkaufsbele-
gen ebenfalls zur Verfügung. Ihre Namen setzen sich aus dem Präfix vc_cvar_ und dem vom Benutzer festgelegten Varia-
blennamen zusammen.

Beispiel: Der Benutzer hat eine Variable namens number_of_employees definiert, die die Anzahl der Mitarbeiter des
Unternehmens enthält. Diese Variable steht dann unter dem Namen vc_cvar_number_of_employees zur Verfügung.

Die benutzerdefinierten Variablen der Lieferadressen stehen unter einem ähnlichen Namensschema zur Verfügung. Hier lautet
der Präfix shiptocvar_.

Features und Funktionen

64

Analog stehen die benutzerdefinierten Variablen für Ansprechpersonen mit dem Namenspräfix cp_cvar_ zur Verfügung.

Auch für das globale Projekt des Belegs stehen die benutzerdefinierten Variablen mit dem Namenspräfix project_cvar_
zur Verfügung.

3.3.9. Variablen in Mahnungen und Rechnungen über
Mahngebühren

3.3.9.1. Namen der Vorlagen

Die Namen der Vorlagen werden im System-Menü vom Benutzer eingegeben. Wird für ein Mahnlevel die Option zur automa-
tischen Erstellung einer Rechnung über die Mahngebühren und Zinsen aktiviert, so wird der Name der Vorlage für diese Rech-
nung aus dem Vorlagenname für diese Mahnstufe mit dem Zusatz _invoice gebildet. Weiterhin werden die Kürzel für die
ausgewählte Sprache und den ausgewählten Drucker angehängt.

3.3.9.2. Allgemeine Variablen in Mahnungen

Die Variablen des Bearbeiters, bzw. Verkäufers stehen wie gewohnt als employee_... bzw. salesman_... zur Verfü-
gung. Werden mehrere Rechnungen in einer Mahnung zusammengefasst, so werden die Metadaten (Bearbeiter, Abteilung, etc)
der ersten angemahnten Rechnung im Ausdruck genommen.

Die Adressdaten des Kunden stehen als Variablen name, street, zipcode, city, country, department_1,
department_2, und email zur Verfügung. Der Ansprechpartner cp_... steht auch zu Verfügung, wird allerdings auch
nur von der ersten angemahnten Rechnung (s.o.) genommen.

Weitere Variablen beinhalten:

dunning_date
Datum der Mahnung

dunning_duedate
Fälligkeitsdatum für diese Mahhnung

dunning_id
Mahnungsnummer

fee
Kumulative Mahngebühren

interest_rate
Zinssatz per anno in Prozent

total_amount
Gesamter noch zu zahlender Betrag als fee + total_interest + total_open_amount

total_interest
Zinsen per anno über alle Rechnungen

total_open_amount
Summe über alle offene Beträge der Rechnungen

3.3.9.3. Variablen für jede gemahnte Rechnung in einer Mahnung

dn_amount
Rechnungssumme (brutto)

dn_duedate
Originales Fälligkeitsdatum der Rechnung

Features und Funktionen

65

dn_dunning_date
Datum der Mahnung

dn_dunning_duedate
Fälligkeitsdatum der Mahnung

dn_fee
Kummulative Mahngebühr

dn_interest
Zinsen per anno für diese Rechnung

dn_invnumber
Rechnungsnummer

dn_linetotal
Noch zu zahlender Betrag (ergibt sich aus dn_open_amount + dn_fee + dn_interest)

dn_netamount
Rechnungssumme (netto)

dn_open_amount
Offener Rechnungsbetrag

dn_ordnumber
Bestellnummer

dn_transdate
Rechnungsdatum

dn_curr
Währung, in der die Rechnung erstellt wurde. (Die Rechnungsbeträge sind aber immer in der Hauptwährung)

3.3.9.4. Variablen in automatisch erzeugten Rechnungen über
Mahngebühren

Die Variablen des Verkäufers stehen wie gewohnt als employee_... zur Verfügung. Die Adressdaten des Kunden stehen als
Variablen name, street, zipcode, city, country, department_1, department_2, und email zur Verfügung.

Weitere Variablen beinhalten:

duedate
Fälligkeitsdatum der Rechnung

dunning_id
Mahnungsnummer

fee
Mahngebühren

interest
Zinsen

invamount
Rechnungssumme (ergibt sich aus fee + interest)

invdate
Rechnungsdatum

invnumber
Rechnungsnummer

Features und Funktionen

66

3.3.10. Variablen in anderen Vorlagen

3.3.10.1. Einführung

Die Variablen in anderen Vorlagen sind ähnlich wie in der Rechnung. Allerdings heißen die Variablen, die mit inv beginnen,
jetzt anders. Bei den Angeboten fangen sie mit quo für "quotation" an: quodate für Angebotsdatum etc. Bei Bestellungen
wiederum fangen sie mit ord für "order" an: ordnumber für Bestellnummer etc.

Manche Variablen sind in anderen Vorlagen hingegen gar nicht vorhanden wie z.B. die für bereits verbuchte Zahlungseingänge.
Dies sind Variablen, die vom Geschäftsablauf her in der entsprechenden Vorlage keine Bedeutung haben oder noch nicht belegt
sein können.

Im Folgenden werden nur wichtige Unterschiede zu den Variablen in Rechnungen aufgeführt.

3.3.10.2. Angebote und Preisanfragen

quonumber
Angebots- bzw. Anfragenummer

reqdate
Gültigkeitsdatum (bei Angeboten) bzw. Lieferdatum (bei Preisanfragen)

transdate
Angebots- bzw. Anfragedatum

3.3.10.3. Auftragsbestätigungen und Lieferantenaufträge

ordnumber
Auftragsnummer

reqdate
Lieferdatum

transdate
Auftragsdatum

3.3.10.4. Lieferscheine (Verkauf und Einkauf)

cusordnumber
Bestellnummer des Kunden (im Verkauf) bzw. Bestellnummer des Lieferanten (im Einkauf)

donumber
Lieferscheinnummer

transdate
Lieferscheindatum

Für jede Position eines Lieferscheines gibt es ein Unterarray mit den Informationen darüber, von welchem Lager und Lager-
platz aus die Waren verschickt wurden (Verkaufslieferscheine) bzw. auf welchen Lagerplatz sie eingelagert wurden. Diese
müssen mittels einer foreach-Schleife ausgegeben werden. Diese Variablen sind:

si_bin
Lagerplatz

si_chargenumber
Chargennummer

si_bestbefore
Mindesthaltbarkeit

Features und Funktionen

67

si_number
Artikelnummer

si_qty
Anzahl bzw. Menge

si_runningnumber
Positionsnummer (1, 2, 3 etc)

si_unit
Einheit

si_warehouse
Lager

3.3.10.5. Variablen für Sammelrechnung

c0total
Gesamtbetrag aller Rechnungen mit Fälligkeit < 30 Tage

c30total
Gesamtbetrag aller Rechnungen mit Fälligkeit >= 30 und < 60 Tage

c60total
Gesamtbetrag aller Rechnungen mit Fälligkeit >= 60 und < 90 Tage

c90total
Gesamtbetrag aller Rechnungen mit Fälligkeit >= 90 Tage

total
Gesamtbetrag aller Rechnungen

Variablen für jede Rechnungsposition in Sammelrechnung:

invnumber
Rechnungsnummer

invdate
Rechnungsdatum

duedate
Fälligkeitsdatum

amount
Summe der Rechnung

open
Noch offener Betrag der Rechnung

c0
Noch offener Rechnungsbetrag mit Fälligkeit < 30 Tage

c30
Noch offener Rechnungsbetrag mit Fälligkeit >= 30 und < 60 Tage

c60
Noch offener Rechnungsbetrag mit Fälligkeit >= 60 und < 90 Tage

c90
Noch offener Rechnungsbetrag mit Fälligkeit >= 90 Tage

Features und Funktionen

68

3.3.11. Blöcke, bedingte Anweisungen und Schleifen

3.3.11.1. Einführung

Der Parser kennt neben den Variablen einige weitere Konstrukte, die gesondert behandelt werden. Diese sind wie Variablenna-
men in spezieller Weise markiert: <%anweisung%> ... <%end%>

Anmerkung zum <%end%>: Der besseren Verständlichkeit halber kann man nach dem end noch beliebig weitere Wörter
schreiben, um so zu markieren, welche Anweisung (z.B. if oder foreach) damit abgeschlossen wird.

Beispiel: Lautet der Beginn eines Blockes z.B. <%if type == "sales_quotation"%>, so könnte er mit <%end%> genauso
abgeschlossen werden wie mit <%end if%> oder auch <%end type == "sales_quotation"%>.

3.3.11.2. Der if-Block

<%if variablenname%>
...
<%end%>

Eine normale "if-then"-Bedingung. Die Zeilen zwischen dem "if" und dem "end" werden nur ausgegeben, wenn die Variable
variablenname gesetzt und ungleich 0 ist.

Handelt es sich bei der benannten Variable um ein Array, also um einen Variablennamen, über den man mit <%foreach varia-
blenname%> iteriert, so wird mit diesem Konstrukt darauf getestet, ob das Array Elemente enthält. Somit würde im folgenden
Beispiel nur dann eine Liste von Zahlungseingängen samt ihrer Überschrift "Zahlungseingänge" ausgegeben, wenn tatsächlich
welche getätigt wurden:

<%if payment%>
Zahlungseingänge:
 <%foreach payment%>
 Am <%paymentdate%>: <%payment%> €
 <%end foreach%>
<%end if%>

Die Bedingung kann auch negiert werden, indem das Wort not nach dem if verwendet wird. Beispiel:

<%if not cp_greeting%>
...
<%end%>

Zusätzlich zu dem einfachen Test, ob eine Variable gesetzt ist oder nicht, bietet dieser Block auch die Möglichkeit, den Inhalt
einer Variablen mit einer festen Zeichenkette oder einer anderen Variablen zu vergleichen. Ob der Vergleich mit einer Zeichen-
kette oder einer anderen Variablen vorgenommen wird, hängt davon ab, ob die rechte Seite des Vergleichsoperators in Anfüh-
rungszeichen gesetzt wird (Vergleich mit Zeichenkette) oder nicht (Vergleich mit anderer Variablen). Zwei Beispiele, die beide
Vergleiche zeigen:

<%if var1 == "Wert"%>

Testet die Variable var1 auf übereinstimmung mit der Zeichenkette Wert. Mittels != anstelle von == würde auf Ungleichheit
getestet.

<%if var1 == var2%>

Testet die Variable var1 auf übereinstimmung mit der Variablen var2. Mittel != anstelle von == würde auf Ungleichheit
getestet.

Erfahrere Benutzer können neben der Tests auf (Un-)Gleichheit auch Tests auf Übereinstimmung mit regulären Ausdrücken
ohne Berücksichtung der Groß- und Kleinschreibung durchführen. Dazu dient dieselbe Syntax wie oben nur mit =~ und !~ als
Vergleichsoperatoren.

Beispiel für einen Test, ob die Variable intnotes (interne Bemerkungen) das Wort schwierig enthält:

Features und Funktionen

69

<%if intnotes =~ "schwierig"%>

3.3.11.3. Der foreach-Block

<%foreach variablenname%>
...
<%end%>

Fügt die Zeilen zwischen den beiden Anweisungen so oft ein, wie das Perl-Array der Variablen variablenname Elemente
enthät. Dieses Konstrukt wird zur Ausgabe der einzelnen Posten einer Rechnung / eines Angebots sowie zur Ausgabe der Steu-
ern benutzt. In jedem Durchlauf werden die zeilenbezogenen Variablen jeweils auf den Wert für die aktuelle Position gesetzt.

Die Syntax sieht normalerweise wie folgt aus:

<%foreach number%>
Position: <%runningnumber%>
Anzahl: <%qty%>
Artikelnummer: <%number%>
Beschreibung: <%description%>
...
<%end%>

Besonderheit in OpenDocument-Vorlagen: Tritt ein <%foreach%>-Block innerhalb einer Tabellenzelle auf, so wird die kom-
plette Tabellenzeile so oft wiederholt wie notwendig. Tritt er außerhalb auf, so wird nur der Inhalt zwischen <%foreach%>
und <%end%> wiederholt, nicht aber die komplette Zeile, in der er steht.

3.3.12. Markup-Code zur Textformatierung innerhalb
von Formularen
Wenn der Benutzer innhalb von Formularen in kivitendo Text anders formatiert haben möchte, so ist dies begrenzt möglich.
kivitendo unterstützt die Textformatierung mit HTML-ähnlichen Tags. Der Benutzer kann z.B. bei der Artikelbeschreibung auf
einer Rechnung Teile des Texts zwischen Start- und Endtags setzen. Dieser Teil wird dann automatisch in Anweisungen für das
ausgewählte Vorlagenformat (HTML oder PDF über LaTeX) umgesetzt.

Die unterstützen Formatierungen sind:

Text
Text wird in Fettdruck gesetzt.

<i>Text</i>
Text wird kursiv gesetzt.

<u>Text</u>
Text wird unterstrichen.

<s>Text</s>
Text wird durchgestrichen. Diese Formatierung ist nicht bei der Ausgabe als PDF über LaTeX verfügbar.

<bullet>
Erzeugt einen ausgefüllten Kreis für Aufzählungen (siehe unten).

Der Befehl <bullet> funktioniert momentan auch nur in Latex-Vorlagen.

3.3.13. Hinweise zur Anrede
Das Flag "natürliche Person" (natural_person) aus den Kunden- oder Lieferantenstammdaten kann in den Druckvorlagen
zusammen mit dem Feld "Anrede" (greeting) z.B. dafür verwendet werden, die Anrede zwischen einer allgemeinen und
einer persönlichen Anrede zu unterscheiden.

Features und Funktionen

70

<%if natural_person%><%greeting%> <%name%><%else%>Sehr geehrte Damen und Herren<%end if%>

3.4. Excel-Vorlagen

3.4.1. Zusammenfassung
Dieses Dokument beschreibt den Mechanismus, mit dem Exceltemplates abgearbeitet werden, und die Einschränkungen, die
damit einhergehen.

3.4.2. Bedienung
Der Excel Mechanismus muss in der Konfigurationsdatei aktiviert werden. Die Konfigurationsoption heißt
excel_templates = 1 im Abschnitt [print_templates].

Eine Excelvorlage kann dann unter dem Namen einer beliebigen anderen Vorlage mit der Endung .xls gespeichert werden. In
den normalen Verkaufsmasken taucht nun Excel als auswählbares Format auf und kann von da an wie LaTeX- oder OpenOf-
fice-Vorlagen benutzt werden.

Der Sonderfall der Angebote aus der Kundenmaske ist ebenfalls eine Angebotsvorlage und wird unter dem internen Namen der
Angebote sales_quotation.xls gespeichert.

3.4.3. Variablensyntax
Einfache Syntax: <<varname>>

Dabei sind << und >> die Delimiter. Da Excel auf festen Breiten besteht, kann der Tag künstlich verlängert werden, indem
weitere < oder > eingefügt werden. Der Tag muss nicht symmetrisch sein. Beispiel:

<<<<<varname>>>

Um die Limitierung der festen Breite zu reduzieren, können weitere Variablen in einem Block interpoliert werden. Whitespace
wird dazwishen dann erhalten. Beispiel:

<<<<<varname1 varname2 varname3>>>>>>>>>>>>>>>>>>>>>>>>>>

Die Variablen werden interpoliert, und linksbündig mit Leerzeichen auf die gewünschte Länge aufgefüllt. Ist der String zu
lang, werden überzählige Zeichen abgeschnitten.

Es ist ausserdem möglich, Daten rechtsbündig darzustellen, wenn der Block mit einem Leerzeichen anfängt. Beispiel:

<<<<<< varname>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

Dies würde rechtsbündig triggern. Wenn bei rechtsbündiger Ausrichtung Text abgeschnitten werden muss, wird er vom linken
Ende entfernt.

3.4.4. Einschränkungen
Das Excelformat bis 2002 ist ein binäres Format, und kann nicht mit vertretbarem Aufwand editiert werden. Der Templateme-
chanismus beschränkt sich daher darauf, Textstellen exakt durch einen anderen Text zu ersetzen.

Aus dem gleichen Grund sind die Kontrolllstrukturen <%if%> und <%foreach%> nicht vorhanden. Der Delimiter <% %>
kommt in den Headerinformationen evtl. vor. Deshalb wurde auf den sichereren Delimiter << und >> gewechselt.

3.5. Mandantenkonfiguration Lager
Die Lagerverwaltung in kivitendo funktioniert standardmässig wie folgt: Wird ein Lager mit einem Lagerplatz angelegt, so gibt
es die Möglichkeit hier über den Menüpunkt Lager entsprechende Warenbewegungen durchzuführen. Ferner kann jede Posi-

Features und Funktionen

71

tion eines Lieferscheins ein-, bzw. ausgelagert werden (Einkauf-, bzw. Verkauf). Es können beliebig viele Lager mit beliebig
vielen Lagerplätzen abgebildet werden. Die Lagerbewegungen über einen Lieferschein erfolgt durch Anklicken jeder Einzelpo-
sition und das Auswählen dieser Position zu einem Lager mit Lagerplatz. Dieses Verfahren lässt sich schrittweise vereinfachen,
je nachdem wie die Einstellungen in der Mandatenkonfiguration gesetzt werden.

• Auslagern über Standardlagerplatz Hier wird ein zusätzlicher Knopf (Auslagern über Standard-Lagerplatz) in
dem Lieferschein-Beleg hinzugefügt, der dann alle Lagerbewegungen über den Standardlagerplatz (konfigurierbar pro Ware)
durchführt.

• Auslagern ohne Bestandsprüfung Das obige Auslagern schlägt fehl, wenn die entsprechende Menge für die
Lagerbewegung nicht vorhanden ist, möchte man dies auch ignorieren und ggf. dann nachpflegen, so kann man eine Nega-
tiv-Warenmenge mit dieser Option erlauben. Hierfür muss ein entsprechender Lagerplatz (Fehlbestand, o.ä.) konfiguriert
sein.

Zusätzliche Funktionshinweise:

• Standard-Lagerplatz Ist dieser konfiguriert, wird dies auch als Standard-Voreinstellung bei der Neuerfassung von
Stammdaten → Waren / Dienstleistung / Erzeugnis verwendet.

• Standard-Lagerplatz verwenden, falls keiner in Stammdaten definiert Wird beim 'Auslagern
über Standardlagerplatz' keine Standardlagerplatz zu der Ware gefunden, so wird mit dieser Option einfach der Standardla-
gerplatz verwendet.

3.6. Schweizer Kontenpläne
Seit der Version 3.5 stehen in kivitendo 3 Kontenpläne für den Einsatz in der Schweiz zur Verfügung, einer für Firmen und
Organisationen, die nicht mehrwertsteuerpflichtig sind, einer für Firmen, die mehrwertsteuerpflichtig sind und einer speziell
für Vereine.

Die Kontenpläne orientieren sich am in der Schweiz üblicherweise verwendeten KMU-Kontenrahmen und sind mit der Revisi-
on des Schweizerischen Obligationenrechts (OR) vom 1.1.2013 kompatibel, insbesondere Art.957a Abs.2.

Beim Vereinskontenplan sind standardmässig nur die Konten 1100 (Debitoren CHF) und 1101 (Debitoren EUR) als Buchungs-
konten im Verkauf sowie die Konten 2000 (Kreditoren CHF) und 2001 (Kreditoren EUR) als Buchungskonten im Einkauf vor-
gesehen. Weitere Konten können bei Bedarf in den Konto-Detaileinstellungen als Einkaufs- oder Verkaufskonten konfiguriert
werden.

Die Möglichkeit, Saldosteuersätze zu verwenden ist in der aktuellen Version von kivitendo noch nicht integriert.

Trotzdem können auch Firmen, die per Saldosteuersatz mit der Eidgenössischen Steuerverwaltung abrechnen, kivitendo bereits
nutzen. Dazu wird der Kontenplan mit MWST ausgewählt. Anschliessend müssen alle Aufwandskonten editiert werden und
dort der Steuersatz auf 0% gesetzt werden.

So werden bei Kreditorenbuchungen keine Vorsteuern verbucht.

Bezugssteuern für aus dem Ausland bezogene Dienstleistungen müssen manuell verbucht werden.

Wünsche für Anpassungen an den Schweizer Kontenplänen sowie Vorschläge für weitere (z.B. branchenspezifische) Konten-
pläne bitte an empfang@revamp-it.ch senden.

3.7. Artikelklassifizierung

3.7.1. Übersicht
Die Klassifizierung von Artikeln dient einer weiteren Gliederung, um zum Beispiel den Einkauf vom Verkauf zu trennen,
gekennzeichnet durch eine Beschreibung (z.B. "Einkauf") und ein Kürzel (z.B. "E"). Für jede Klassifizierung besteht eine
Beschreibung und eine Abkürzung die normalerweise aus einem Zeichen besteht, kann aber auf mehrere Zeichen erweitert
werden, falls zur Unterscheidung notwendig. Sinnvoll sind jedoch nur maximal 2 Zeichen.

Features und Funktionen

72

3.7.2. Basisklassifizierung
Als Basisklassifizierungen gibt es

• Einkauf

• Verkauf

• Handelsware

• Produktion

• - keine - (diese wird bei einer Aktualisierung für alle existierenden Artikel verwendet und ist gültig für Verkauf und Einkauf)

Es können weitere Klassifizierungen angelegt werden. So kann es z.B. für separat auszuweisende Artikel folgende Klassen
geben:

• Lieferung (Logistik, Transport) mit Kürzel L

• Material (Verpackungsmaterial) mit Kürzel M

3.7.3. Attribute
Bisher haben die Klassifizierungen folgende Attribute, die auch alle gleichzeitg gültig sein können

• gültig für Verkauf - dieser Artikel kann im Verkauf genutzt werden

• gültig für Einkauf - dieser Artikel kann im Einkauf genutzt werden

• separat ausweisen - hierzu gibt es zur Dokumentengenerierung (LaTeX) eine zusätzliche Variable

Für das Attribut "separat ausweisen" stehen in den LaTeX-Vorlagen die Variable <%non_separate_subtotal%> zur Verfü-
gung, die alle nicht separat auszuweisenden Artikelkosten saldiert, sowie pro separat auszuweisenden Klassifizierungen die
Variable< %separate_X_subtotal%>, wobei X das Kürzel der Klassifizierung ist.

Im obigen Beispiel wäre das für Lieferkosten <%separate_L_subtotal%> und für Verpackungsmaterial <
%separate_M_subtotal%>.

3.7.4. Zwei-Zeichen Abkürzung
Der Typ des Artikels und die Klassifizierung werden durch zwei Buchstaben dargestellt. Der erste Buchstabe ist eine Lokalisie-
rung des Artikel-Typs ('P','A','S'), deutsch 'W', 'E', und 'D' für Ware Erzeugnis oder Dienstleistung und ggf. weiterer Typen.

Der zweite Buchstabe (und ggf. auch ein dritter, falls nötig) entspricht der lokalisierten Abkürzung der Klassifizierung.

Diese Abkürzung wird überall beim Auflisten von Artikeln zur Erleichterung mit dargestellt.

3.8. Dateiverwaltung (Mini-DMS)

3.8.1. Übersicht
Parallel zum alten WebDAV gibt es ein Datei-Management-System, das Dateien verschiedenen Typs verwaltet. Dies können

1. aus ERP-Daten per LaTeX Template erzeugte PDF-Dokumente,

2. zu bestimmten ERP-Daten gehörende Anhangdateien unterschiedlichen Formats,

3. per Scanner eingelesene PDF-Dateien,

4. per E-Mail empfangene Dateianhänge unterschiedlichen Formats,

5. sowie speziel für Artikel hochgeladene Bilder sein.

Features und Funktionen

73

3.8.2. Struktur
Über eine vom Speichermedium unabhängige Zwischenschicht werden die Dateien und ihre Versionen in der Datenbank ver-
waltet. Darunter können verschiedene Implementierungen (Backends) gleichzeitig existieren:

• Dateisystem

• WebDAV

• Schnittstelle zu externen Dokumenten-Management-Systemen

• andere Datenbank

• etc ...

Es gibt unterschiedliche Typen von Dateien. Jedem Typ läßt sich in der Mandantenkonfiguration ein bestimmtes Backend
zuordnen.

• "document": Das sind entweder generierte, eingescannte oder hochgeladene PDF-Dateien, die zu bestimmten ERP-Daten
(ERP-Objekte, wie z.B. Rechnung, Lieferschein) gehören.

• "attachment": zusätzlich hochgeladene Dokumente, die an bestimmte ERP-Objekte angehängt werden, z.B. technische
Zeichnungen, Aufmaße. Diese können auch für Artikel, Lieferanten und Kunden hinterlegt sein.

• "image": Bilder für Artikel. Diese können auch verkleinert in einer Vorschau (Thumbnail) angezeigt werden.

Zusätzlich werden in der Datenbank zu den Dateien neben der Zuordnung zu ERP-Objekten, Dateityp Dateinamen und
Backend, in dem die Datei gespeichert ist, auch die Quelle der Datei notiert:

• "created": vom System erzeugte Dokumente"

• "uploaded": hochgeladene Dokumente

Features und Funktionen

74

• "email": vom Mail-System empfangene Dateien

• "scanner[1]": von einem oder mehreren Scannern erzeugte Dateien. Existieren mehrere Scanner, so sind diese durch unter-
schiedliche Quellennamen zu definieren.

Je nach Dateityp sind nur bestimmte Quellen zulässig. So gibt es für "attachment" und "image" nur die Quelle "uploaded". Für
"document" gibt es auf jeden Fall die Quelle "created". Die Quellen "scanner" und "email" müssen derzeit in der Datenbank
konfiguriert werden (siehe Datenbank-Konfigurierung [78]).

3.8.3. Anwendung

Die Daten werden bei den ERP-Objekten als extra Reiter dargestellt. Eine Verkaufsrechnung z.B. hat die Reiter "Dokumente"
und "Dateianhänge".

Bei den Dateianhängen wird immer nur die aktuelle Version einer Datei angezeigt. Wird eine Datei mit gleichem Namen hoch-
geladen, so wird eine neue Version der Datei erstellt. Vorher wird der Anwender durch einen Dialog gefragt, ob er eine neue
Version anlegen will oder ob er die Datei umbenennen will, falls es eine neue Datei sein soll.

Features und Funktionen

75

Es können mehrere Dateien gleichzeitig hochgeladen werden, solange in Summe die maximale Größe nicht überschritten wird
(siehe Mandantenkonfigurierung [76]).

Sind keine weiteren Quellen für Dokumente konfiguriert, so gibt es nur "erzeugte Dokumente". Es werden alle Versionen der
generierten Datei angezeigt. Für Verkaufsrechnungen kommen keine anderen Quellen zur Geltung. Werden entsprechend der
Datenbank-Konfigurierung [78] zusätzliche Quellen konfiguriert, so sind diese z.B. bei Einkaufsrechnungen sichtbar:

Features und Funktionen

76

Statt des Löschens wird hier die Datei zurück zur Quelle verschoben. Somit kann die Datei anschließend an ein anderes ERP-
Objekt angehängt werden.

Derzeit sind "Titel" und "Beschreibung" noch nicht genutzt. Sie sind bisher nur bei Bildern relevant.

3.8.4. Konfigurierung

3.8.4.1. Mandantenkonfiguration

3.8.4.1.1. Reiter "Features"

Unter dem Reiter Features im Abschnitt Dateimanagement ist neben dem "alten" WebDAV das Dateimangement generell
zu- und abschaltbar, sowie die Zuordnung der Dateitypen zu Backends. Die Löschbarkeit von Dateien, sowie die maximale
Uploadgröße sind Backend-unabhängig

Features und Funktionen

77

Die einzelnen Backends sind einzeln einschaltbar. Spezifische Backend-Konfigurierungen sind hier noch ergänzbar.

3.8.4.1.2. Reiter "Allgemeine Dokumentenanhänge"

Unter dem Reiter Allgemeine Dokumentenanhänge kann für alle ERP-Dokumente (Angebote, Aufträge, Lieferscheine,
Rechnungen im Verkauf und Einkauf) allgemeingültige Anhänge hochgeladen werden.

Features und Funktionen

78

Diese Anhänge werden beim Generieren von PDF-Dateien an die ERP-Dokumente angehängt, z.B. AGBs oder aktuelle Ange-
bote. Es werden in dem Fall die Daten kopiert, sodass an den ERP-Dokumenten immer die Anhänge zum Generierungszeit-
punkt eingebettet sind.

3.8.4.2. Datenbank-Konfigurierung

Die zusätzlichen Quellen für "email" oder ein oder mehrere Scanner sind derzeit vom Administrator direkt in der Datenbankta-
belle "user_preferences" einzurichten. Die "value" ist im JSON-Format mit den jeweiligen Werten des Verzeichnisses und der
Beschreibung der Quelle.

 id | login | namespace | version | key | value
----+-----------+--------------+---------+----------+---------------------------
 1 | #default# | file_sources | 0.00000 | scanner1 |
 {"dir":"/var/tmp/scanner1","desc":"Scanner Einkauf"}
 2 | #default# | file_sources | 0.00000 | scanner2 |
 {"dir":"/var/tmp/scanner2","desc":"Scanner Verkauf"}
 3 | #default# | file_sources | 0.00000 | emails |
 {"dir":"/var/tmp/emails","desc":"Empfangene Mails" }

Es ist daran gedacht, statt dem Default-Eintrag später für bestimmte Benutzer ('login') bestimmte Quellen zuzulassen. Dies
wird nach Bedarf implementiert.

3.8.4.3. kivitendo-Konfigurationsdatei

Dort ist im Abschnitt [paths] der relative oder absolute Pfad zum Dokumentenwurzelverzeichnis einzutragen. Dieser muss für
den Webserver schreib- und lesbar sein, jedoch nicht ausführbar.

[paths]
document_path = /var/local/kivi_documents

Unter diesem Wurzelverzeichnis wird pro Mandant automatisch ein Unterverzeichnis mit der ID des Mandanten angelegt.

3.9. Webshop-Api
Das Shopmodul bietet die Möglichkeit Onlineshopartikel und Onlineshopbestellungen zu verwalten und zu bearbeiten.

Es ist Multishopfähig, d.h. Artikel können mehreren oder unterschiedlichen Shops zugeordnet werden. Bestellungen können
aus mehreren Shops geholt werden.

Zur Zeit bietet das Modul nur einen Connector zur REST-Api von Shopware. Weitere Connectoren können dazu programmiert
und eingerichtet werden.

3.9.1. Rechte für die Webshopapi
In der Administration können folgende Rechte vergeben werden

• Webshopartikel anlegen und bearbeiten

• Shopbestellungen holen und bearbeiten

• Shop anlegen und bearbeiten

3.9.2. Konfiguration
Unter System->Webshops können Shops angelegt und konfiguriert werden

Features und Funktionen

79

3.9.3. Webshopartikel

3.9.3.1. Shopvariablenreiter in Artikelstammdaten

Mit dem Recht "Shopartikel anlegen und bearbeiten" und des Markers "Shopartikel" in den Basisdaten zeigt sich der Reiter
"Shopvariablen" in den Artikelstammdaten. Hier können jetzt die Artikel mit unterschiedlichen Beschreibung und/oder Preisen
für die konfigutierten Shops angelegt und bearbeitet werden. An dieser Stelle können auch beliebig viele Bilder dem Shoparti-
kel zugeordnet werden. Artikelbilder gelten für alle Shops.

Features und Funktionen

80

Die Artikelgruppen werden direkt vom Shopsystem geholt somit ist es möglich einen Artikel auch mehreren Gruppen zuzuor-
denen

3.9.3.2. Shopartikelliste

Unter dem Menu Webshop->Webshop Artikel hat man nochmal eine Gesamtübersicht. Von hier aus ist es möglich Artikel im
Stapel unter verschiedenen Kriterien <alles><nur Preis><nur Bestand><Preis und Bestand> an die jeweiligen Shops hochzula-
den.

3.9.4. Bestellimport

Unter dem Menupunkt Webshop->Webshop Import öffnet sich die Bestellimportsliste. Hier ist sind Möglichkeiten gegeben
Neue Bestellungen vom Shop abzuholen, geholte Bestellungen im Stapel oder einzeln als Auftrag zu transferieren. Die Liste
kann nach verschiedenen Kriterien gefiltert werden.

Features und Funktionen

81

Bei Einträgen in der Liste.

• keine Kundennummer: Es gibt ähnliche Kundendatensätze und der Datensatz konnte nicht eindeutig zugewiesen werden.

• Kundennummer und Rechnungen rot hinterlegt: Der Kunde hat offene Posten und kann deswegen nicht im Stapel übernom-
men werden.

• Rechnungsadresse grün hinterlegt: Der Kunde konnte eindeutig einem Datensatz zugeordnet werden. Die Shopbestellung
kann im Stapel mit dem Button "Anwenden" und wenn markiert als Auftrag übernommen werden.

• Kundennummer vorhanden, aber die Checkbox "Auftrag erstellen" fehlt. Der Kunde hat vermutlich eine Shopauftragssperre.

• Lieferadresse grau hinterlegt: Optische Anzeige, dass es sich um eine unterschiedliche Lieferadresse handelt. Lieferadressen
werden aber grundsätzlich beim Transferieren zu Aufträgen mit übernommen.

• In der Spalte Positionen/Betrag/Versandkosten zeigt sich ein tooltip zu den Positionen.

Maske Auftrag erstellen

Viele Shopsysteme haben drei verschieden Adresstypen Kunden-, Rechnungs-, und Lieferadresse, die sich auch alle unter-
scheiden können. Diese werden im oberen Bereich angezeigt. Es ist möglich jede dieser Adresse einzeln in kivitendo als Kun-
de zu übernehmen. Es werden die Werte Formulareingabe übernommen. Es wird bei einer Änderung allerdings nur diese in die
kivitendo Kundenstammdaten übernommen, die Shopbestellung bleibt bestehen.

Mit der mittleren Adresse(Rechnungsadresse) im oberen Bereich, kann ich den ausgewählten kivitendodatensatz des mittleren
Bereich überschreiben. Das ist sinnvoll, wenn ich erkenne, das der Kunde z.B. umgezogen ist.

Im mittleren Bereich das Adresslisting zeigt:

• Rot hinterlegt: Kunde hat eine Shopauftragssperre, diese muss zuerst deaktiviert werden bevor ich diesem Kunden eine
Shopbestellung zuordnen kann.

Features und Funktionen

82

• Kundenname fett und rot: Hier hat der Kunde eine Bemerkung in den Stammdaten. Ein Tooltip zeigt diese Bemerkung. Das
kann dan auch der Grund für die Auftragssperre sein.

• Die Buttons "Auftrag erstellen" und "Kunde mit Rechnungsadresse überschreiben" zeigen sich erst, wenn ein Kunde aus
dem Listing ausgewählt ist.

• Es ist aber möglich die Shopbestellung zu löschen.

• Ist eine Bestellung schon übernommen, zeigen sich an dieser Stelle, die dazugehörigen Belegverknüpfungen.

3.9.5. Mapping der Daten

Das Mapping der kivitendo Daten mit den Shopdaten geschieht in der Datei SL/ShopConnec-
tor/<SHOPCONNECTORNAME>.pm z.B.:SL/ShopConnector/Shopware.pm

In dieser Datei gibt es einen Bereich wo die Bestellpostionen, die Bestellkopfdaten und die Artikeldaten gemapt werden. In
dieser Datei kann ein individelles Mapping dann gemacht werden. Zu Shopware gibt es hier eine sehr gute Dokumentation:
https://developers.shopware.com/developers-guide/rest-api/

3.10. ZUGFeRD Rechnungen

3.10.1. Vorbedingung

Für die Erstellung von ZUGFeRD PDFs wird TexLive2018 oder höher benötigt.

Anmerkung

Wer kein TexLive2018 oder höher installieren kann, kann eine lokale Umgebung nur für kivitendo wie folgt
erzeugen:

 1. Download des offiziellen Installers von https://www.tug.org/texlive/quickinstall.html

 2. Installer ausführen, Standard-Ort für Installation belassen, evtl. ein paar Pakete abwählen, installieren lassen

 3. Ein kleine Script »run_pdflatex.sh« anlegen, das den PATH auf das Installationsverezichnis setzt und pdflatex ausführt:

 --
 #!/bin/bash

 export PATH=/usr/local/texlive/2020/bin/x86_64-linux:$PATH
 hash -r

 exec latexmk --pdflatex "$@"
 --

 4. In config/kivitendo.conf den Parameter »latex« auf den Pfad zu »run_pdflatex.sh« setzen

 5. Webserver neu starten

3.10.2. Übersicht

Mit der Version 3.5.6 bietet kivitendo die Möglichkeit ZUGFeRD Rechnungen zu erstellen, sowie auch ZUGFeRD Rechnun-
gen direkt in kivitendo einzulesen.

https://developers.shopware.com/developers-guide/rest-api/

Features und Funktionen

83

Bei ZUGFeRD Rechnungen handelt es sich um eine PDF Datei in der eine XML-Datei eingebettet ist. Der Aufbau der XML-
Datei ist standardisiert und ermöglicht so den Austausch zwischen den verschiedenen Softwareprodukten. Kivitendo setzt mit
der Version 3.5.6 den ZUGFeRD 2.1 Standard um.

Weiter Details zu ZUGFeRD sind unter diesem Link zu finden: https://www.ferd-net.de/standards/was-ist-zugferd/index.html

3.10.3. Erstellen von ZUGFeRD Rechnungen in Kivitendo

Für die Erstellung von ZUGFeRD Rechnungen bedarf es in kivitendo zwei Dinge:

1. Die Erstellung muss in der Mandantenkonfiguration aktiviert sein

2. Beim mindestens einem Bankkonto muss die Option „Nutzung von ZUGFeRD“ aktiviert sein

3.10.3.1. Mandantenkonfiguration

Die Einstellung für die Erstellung von ZUGFeRD Rechnungen erfolgt unter „System“ → „Mandatenkonfiguration“ → „Fea-
tures“. Im Abschnitt „Einkauf und Verkauf“ finden Sie die Einstellung „Verkaufsrechnungen mit ZUGFeRD-Daten erzeugen“.
Hier besteht die Auswahl zwischen:

• ZUGFeRD-Rechnungen erzeugen

• ZUGFeRD-Rechnungen im Testmodus erzeugen

• Keine ZUGFeRD Rechnungen erzeugen

Rechnungen die als PDF erzeugt werden, werden je nach Einstellung nun im ZUGFeRD Format ausgegeben.

3.10.3.2. Konfiguration der Bankkonten

Unter „System → Bankkonten“ muss bei mindestens einem Bankkonto die Option „Nutzung mit ZUGFeRD“ auf „Ja“ gestellt
werden.

3.10.4. Einlesen von ZUGFeRD Rechnungen in Kivitendo

Es lassen sich auch Rechnungen von Kreditoren, die im ZUGFeRD Format erstellt wurden, nach Kivitendo importieren. Hier-
für müssen auch zwei Voraussetzungen erfüllt werden:

1. Beim Lieferanten muss die Umsatzsteuer-ID und das Bankkonto hinterlegt sein

2. Für den Kreditoren muss eine Buchungsvorlage existieren.

Wenn diese Voraussetzungen erfüllt sind, kann die Rechnung über „Finanzbuchhaltung“ → „Factur-X-/ZUGFeRD-Import“
über die „Durchsuchen“ Schaltfläche ausgewählt werden und über die Schaltfläche „Import“ eingeladen werden. Es öffnet sich
daraufhin die Kreditorenbuchung. Die auslesbaren Daten aus dem eingebetteten XML der PDF Datei werden in der Kredito-
renbuchung ergänzt.

3.11. Reklamationen
Reklamationen dienen dazu im Verkauf die Kundenzufriedenheit zu verbessern und Fehler in der Abwicklung von Aufträgen
aufzuspüren und dann zu vermeiden.

Im Einkauf helfen Reklamationen beanstandete Lieferungen zu verwalten und zu kontrollieren.

3.11.1. Konfiguration des Reklamationsmodul

Unter dem Menu "System->Reklamationsgründe" muss mindestens ein Reklamationsgrund erfasst werden.

https://www.ferd-net.de/standards/was-ist-zugferd/index.html

Features und Funktionen

84

Aufgrund der Gründe können später in den Berichten Auswertungen gemacht werden.

3.11.2. Reklamation erfassen

Aus den Belegen EK/VK Auftrag, EK/VK Lieferschein, EK/VK Rechnung kann unter "Workflow->Reklöamation erfassen"
eine dem Workflow zugehörige Reklamation erfasst werden. Die Reklamationsmaske ähnelt im großem die der Auftragsmas-
ke.

Features und Funktionen

85

Es werden alle Positionen aus dem Beleg übernomen. Deswegen müssen hie die Positionen angepasst werden. Zusätzlich muss
noch ein Reklamationsgrund angegeben werden.

Die Reklamationsgründe sind für spätere Auswertungen notwendig

Anmerkung

Anmerkung: Da bei einem Auftrag, sowohl im EK als auch im VK, noch keine Ware versendet bzw. empfangen
wurde, könnte hier ein Reklamationsgrund "Lieferver sein.

3.11.3. Reklamationen auswerten

Bisher gibt es nur eine Liste mit Reklamationen und deren Filtermöglichkeiten.

Einen individuellen Reklamationsbericht kann über einen "benutzerdefinierten Datenexport" erstellt werden

3.12. Dispositionsmanager/Einkaufshelfer
Der Einkaufshelfer generiert Lieferantenaufträge anhand eines Warenkorbes. Der Warenkorb kann einzeln oder mit dem Mel-
debestandsbericht gefüllt werden. Mit dem Filter „Lieferant“ im Warenkorb werden die Artikel einem Lieferanten zugeordnet
und können dann bestellt, d.h. ein Lieferantenauftragerstellt, werden.

Features und Funktionen

86

3.12.1. So kommen die Artikel in den Einkaufswaren-
korb:

1) Sofern ein Artikel einen oder mehrere Lieferanten hat kann dieser über den Button „Einkaufen“ in den Einkaufswarenkorn
gelegt werden. Soll der Einkauf über den Mindestlagerbestand gesteuert werden sind die Felder "Mindestlagerbestand" und
"Bestellmenge" auszufüllen.

Der Button „Einkaufen“ ist deaktiviert, wenn es keinen Lieferanten zu diesem Artikel gibt oder der Artikel schon im Einkaufs-
warenkorb liegt.

2) Bericht „Meldebestand“ Über das Menu "Einkauf->Meldebestand" kann der Meldebestand abgerufen werden

Features und Funktionen

87

Die obere Tabelle zeigt die Artikel an, die den Mindestbestand unterschritten haben und können sofern markiert über die Akti-
on "Einkaufen" in den Einkaufswarenkorb gelegt werden. Hierzu muss das Feld Mindesbestand in den Artikelstammdaten
einen Wert > 0 haben

Die untere Tabelle zeigt die Artikel an, die den Mindestbestand unterschritten haben aber bestellt sind.

3.12.2. Der Einkaufswarenkorb

Ohne Filter: der erste Lieferant ist ausgewählt. Hier kann jetzt auch ein anderer Lieferant ausgewählt werden.

Features und Funktionen

88

Wird dann nach einem Lieferanten gefiltert und dieser ist und bleibt eindeutig, kann daraus ein Lieferantenauftrag erstellt wer-
den.

Die obere Tabelle zeigt die Artikel an, die den Mindestbestand unterschritten haben, der untere Teil zeigt alle Artikel des Liefe-
ranten an, somit ist es möglich diese Artikel auszuwählen und gleich mitzubestellen

3.13. Zeiterfassung
Seit der Version 3.5.7 enthält kivitendo ein Modul zur Zeiterfassung. Damit ist es möglich, auftrags-, kunden- oder projektbe-
zogen, Arbeitszeiten zu erfassen. Die erfassten Zeiten können über einen Hintergrund-Job in Lieferscheine umgewandelt wer-
den.

3.13.1. Konfiguration

Die Zeiterfasssung funktioniert auch ohne Konfiguration, sofern der Benutzer die entsprechenden Rechte besitzt. Allerdings ist
es möglich, Artikel für die Zeiterfassung zu konfigurieren, die im Bericht ausgewertet und bei der Umwandlung zum Liefer-
schein verwendet werden können. Zudem kann auf benutzerebene eingestellt werden, ob Zeiten mit Start- und End-Zeit oder
mit Datum und Dauer erfasst werden sollen.

3.13.1.1. Zugriffsrechte

In der Rechteverwaltung im Admin-Bereich können im Zusammenhang mit der Zeiterfassung drei verschiedene Rechte verge-
ben werden:

• Zeiterfassungen erfassen, bearbeiten und ansehen

Diese Recht steuert, ob eine Gruppe den Menüpunkt zur Zeiterfassung überhaupt sehen und diese verwenden kann.

• Zeiterfassungseinträge aller Mitarbeiter anzeigen

Ohne dieses Recht darf ein Benutzer einer Benutzergruppe, die die Zeiterfassung verwenden darf, nur Zeiteinträge im
Bericht sehen, bei denen dieser als Mitarbeiter eingetragen ist.

• Zeiterfassungseinträge aller Mitarbeiter bearbeiten

Ohne dieses Recht darf ein Benutzer einer Benutzergruppe, die die Zeiterfassung verwenden darf, nur Zeiteinträge anlegen
und bearbeiten, bei denen dieser als Mitarbeiter eingetragen ist.

Features und Funktionen

89

3.13.1.2. Artikel für Zeiterfassung

Unter System → Artikel für Zeiterfassung können Artikel zur Nutzung mit der Zeiterfassung erfasst werden. Diese Artikel
müssen eine zeitbasierte Einheit haben.

3.13.1.3. Benutzereinstellungen

Unter Programm → Benutzereinstellungen im Reiter Persönliche Einstellungen bei Datum und Dauer für Zeiterfassung ver-
wenden kann der Benutzer angeben, ob Zeiten mit Start- und End-Zeit oder mit Datum und Dauer erfasst werden sollen.

3.13.2. Erfassen
Über den Menüpunkt Produktivität → Zeiterfassung gelangt man zur Erfassungsmaske der Zeiterfassung. Je nach Einstellung
muss ein Datum oder Datum und Start-Zeit angegeben werden. Ebenso sind die Felder Kunde und Beschreibung Pflichtfelder.

Wird ein Auftrag oder ein Projekt, dem ein Kunde zugeordnet ist, ausgewählt, so wird das Feld Kunde automatisch mit dem
zugehörigen Kunden gefüllt und für die manuelle Bearbeitung gesperrt.

Die End-Zeit bzw. die Dauer ist kein Pflichtfeld, damit man einen Eintrag z.B. beim Start der Arbeit anlegen und später am
Ende dann die End-Zeit bzw. Dauer erfassen kann. Bei Eingabe über Start- und End-Zeit dürfen sich die Zeiten für ein und
denselben Mitarbeiter nicht überlappen.

Falls der Bearbeiter das Recht Zeiterfassungseinträge aller Mitarbeiter bearbeiten besitzt, kann auch der Mitarbeiter für diesen
Zeiteintrag ausgewählt werden.

3.13.3. Bericht
Ein Bericht über die erfassten Zeiten lässt sich über Produktivität → Berichte → Zeiterfassung ausgeben. Hier lassen sich die
Zeiten auch filtern, sortieren und exportieren.

Ausgewählte Zeiteinträge können über Aktionen → Als gebucht markieren als schon gebucht markiert werden. Dies geschieht
normalerweise bei der Konvertierung zum Lieferschein und kann hier händisch durchgeführt werden, wenn diese Zeitbuchun-
gen bei der Konvertierung nicht mehr berücksichtigt werden sollen.

3.13.4. Konvertierung zu Lieferscheinen
Über den Hintergrund-Job ConvertTimeRecordings können Zeiteinträge in Lieferscheine umgewandelt werden. Hierbei wer-
den alle noch nicht gebuchten Zeiteinträge eines bestimmten Zeitraums für bestimmte Kunden gesammelt und in Lieferscheine
umgewandelt. Pro Kunde wird ein Lieferschein generiert und pro Artikel wird eine Positionszeile erzeugt. Dabei werden Ein-
träge mit gleichen Beschreibungen zusammengefasst. Die Details landen im Langtext der Position.

Ohne übergebene Parameter im Feld Daten werden alle Zeiteinträge des letzten Monats für alle Kunden umgewandelt. Dabei
werden die Zeiten auf volle Viertelstunden aufgerundet (siehe auch Konfigurations-Optionen der Zeiterfassung [89]).

3.13.4.1. Konfigurations-Optionen

Zur generellen Konfiguration von Hintergrund-Jobs und zur Übergabe von Parametern als Daten an diese, siehe Abschnitt 2.8,
„Der Task-Server“ [18] bzw. Abschnitt 2.9, „Konfiguration der Hintergrund-Jobs“ [21]).

Folgende Parameter können als Daten an den Hintergrund-Job zur Konvertierung übergeben werden:

• from_date

Das Startdatum, von welchen an die Zeiteinträge berücksicht werden. Voreinstellung ist der erste Tag des vorherigen Mon-
tats.

Beispiel (das Zeitformat hängt von der persönlichen Einstellungen ab):

from_date: 01.12.2020

Features und Funktionen

90

• to_date

Das Datum, bis zu welchem die Zeiteinträge zur Konvertierung gesammelt werden. Voreinstellung ist der letzte Tag des vor-
herigen Montas.

Beispiel (das Zeitformat hängt von der persönlichen Einstellungen ab):

to_date: 15.12.2020

• customernumbers

Eine Liste mit Kundennummern, für die Zeiteinträge gesammelt werden sollen. Wird diese Liste nicht angegeben, werden
Einträge für alle Kunden berücksichtig.

customernumbers: [c1,22332,334343]

• override_part_id

Die Datenbank-Id einer zeitbasierten Dienstleistung, die verwendet werden soll, um die Zeiteinträge zu buchen. Dieser Wert
überschreibt den Eintrag des Artikels des Zeiteintrags.

• default_part_id

Die Datenbank-Id einer zeitbasierten Dienstleistung, die verwendet werden soll, um die Zeiteinträge zu buchen, falls im
Zeiteintrag kein Artikel gespeichert ist.

• rounding

Ist dieser Wert 0, so werden die Zeiten nicht gerundet. Ist der Wert 1 (oder "wahr" in Perl"), so werden die Zeiten auf volle
Viertelstunden aufgerundet, also z.B. 0.25h, 0.5h, 0.75h, 1.25h ...

Voreinstellung ist 1 ("wahr").

• link_order

Ist der Wert 1 (oder "wahr" in Perl"), so verknüpft der Hintergrund-Job den erzeugten Lieferschein mit dem im Zeiteintrag
angegebenen Auftrag. Ist kein Auftrag angegeben, wird versucht, einen Auftrag für den angegebenen Kunden und die ange-
gebene Projektnummer zu finden.

Folgende Kriterien werden zum Finden eines Vorgängerauftrags angwendet:

• Auftrag ist im Zeiteintrag angegeben oder

• Datenbank-Id des Projekts des Auftrags ist gleich der Datenbank-Id des Zeiteintrags oder der in den Daten übergebenen
Projekt-Id

• Kunde des Auftrags ist gleich Kunde des Zeiteintrags

• der Auftrag muss mindestens eine zugehörige zeitbasierte Position haben

• das Projekt muss gültig und aktiv sein

Voreinstellung ist aus. Wenn dieser Parameter gesetzt ist, läuft der Hintergrund-Job auf einen Fehler, falls kein geeigneter
Vorgängerauftrag gefunden werden kann.

Der Job beachtet nicht, ob der Auftrag schon geliefert oder geschlossen ist. Wenn der Kundenauftrag überliefert wird, muss
dies organisatorisch geklärt werden. Der Kundenauftrag kann auch bereits geschlossen sein, d.h. der Betrag ist vollständig
fakturiert, aber die Leistungen sind noch nicht vollständig geliefert (einfacher Fall: "Vorauskasse").

siehe auch den Hintergrund-Job CloseProjectsBelongingToClosedSalesOrder für eine weitergehende Auto-
matisierung der Abläufe.

• override_project_id

Features und Funktionen

91

Verwende diese Datenbank-Id für das Projekt an Stelle des im Zeiteintrag angegebenen Projekts, um den zugehörigen Auf-
trag zu finden. Dieser Parameter wird nur berücksichtig, wenn link_order wahr ist.

• default_project_id

Verwende diese Datenbank-Id für das Projekt, falls im Zeiteintrag kein Projekt angegeben ist, um den zugehörigen Auftrag
zu finden. Dieser Parameter wird nur berücksichtig, wenn

92

4
Entwicklerdokumentation

4.1. Globale Variablen

4.1.1. Wie sehen globale Variablen in Perl aus?
Globale Variablen liegen in einem speziellen namespace namens "main", der von überall erreichbar ist. Darüber hinaus sind
bareword globs global und die meisten speziellen Variablen sind... speziell.

Daraus ergeben sich folgende Formen:

$main::form
expliziter Namespace "main"

$::form
impliziter Namespace "main"

open FILE, "file.txt"
FILE ist global

$_
speziell

Im Gegensatz zu PHP™ gibt es kein Schlüsselwort wie "global", mit dem man importieren kann. my, our und local
machen was anderes.

my $form
lexikalische Variable, gültig bis zum Ende des Scopes

our $form
$form referenziert ab hier $PACKAGE::form.

local $form
Alle Änderungen an $form werden am Ende des scopes zurückgesetzt

4.1.2. Warum sind globale Variablen ein Problem?
Das erste Problem ist FCGI™.

SQL-Ledger™ hat fast alles im globalen namespace abgelegt, und erwartet, dass es da auch wiederzufinden ist. Unter FCGI™
müssen diese Sachen aber wieder aufgeräumt werden, damit sie nicht in den nächsten Request kommen. Einige Sachen wieder-
um sollen nicht gelöscht werden, wie zum Beispiel Datenbankverbindungen, weil die sehr lange zum Initialisieren brauchen.

Das zweite Problem ist strict. Unter strict werden alle Variablen die nicht explizit mit Package, my oder our angege-
ben werden als Tippfehler angemarkert, dies hat, seit der Einführung, u.a. schon so manche langwierige Bug-Suche verkürzt.
Da globale Variablen aber implizit mit Package angegeben werden, werden die nicht geprüft, und somit kann sich schnell ein
Tippfehler einschleichen.

Entwicklerdokumentation

93

4.1.3. Kanonische globale Variablen

Um dieses Problem im Griff zu halten gibt es einige wenige globale Variablen, die kanonisch sind, d.h. sie haben bestimmte
vorgegebenen Eigenschaften, und alles andere sollte anderweitig umhergereicht werden.

Diese Variablen sind im Moment die folgenden neun:

• $::form

• %::myconfig

• $::locale

• $::lxdebug

• $::auth

• $::lx_office_conf

• $::instance_conf

• $::dispatcher

• $::request

Damit diese nicht erneut als Müllhalde missbraucht werden, im Folgenden eine kurze Erläuterung der bestimmten vorgegebe-
nen Eigenschaften (Konventionen):

4.1.3.1. $::form

• Ist ein Objekt der Klasse "Form"

• Wird nach jedem Request gelöscht

• Muss auch in Tests und Konsolenscripts vorhanden sein.

• Enthält am Anfang eines Requests die Requestparameter vom User

• Kann zwar intern über Requestgrenzen ein Datenbankhandle cachen, das wird aber momentan absichtlich zerstört

$::form wurde unter SQL Ledger™ als Gottobjekt für alles missbraucht. Sämtliche alten Funktionen unter SL/ mutieren
$::form, das heißt, alles was einem lieb ist (alle Variablen die einem ans Herz gewachsen sind), sollte man vor einem Aufruf
(!) von zum Beispiel IS->retrieve_customer() in Sicherheit bringen.

Z.B. das vom Benutzer eingestellte Zahlenformat, bevor man Berechnung in einem bestimmten Format durchführt (SL/
Form.pm Zeile 3552, Stand version 2.7beta), um dies hinterher wieder auf den richtigen Wert zu setzen:

 my $saved_numberformat = $::myconfig{numberformat};
 $::myconfig{numberformat} = $numberformat;
 # (...) div Berechnungen
 $::myconfig{numberformat} = $saved_numberformat;

Das Objekt der Klasse Form hat leider im Moment noch viele zentrale Funktionen die vom internen Zustand abhängen, des-
halb bitte nie einfach zerstören oder überschreiben (zumindestens nicht kurz vor einem Release oder in Absprache über bspw.
die devel-Liste ;-). Es geht ziemlich sicher etwas kaputt.

$::form ist gleichzeitig der Standard Scope in den Template::Toolkit™ Templates außerhalb der Controller: der Ausdruck
[% var %] greift auf $::form->{var} zu. Unter Controllern ist der Standard Scope anders, da lautet der Zugriff [%
FORM.var %]. In Druckvorlagen sind normale Variablen ebenfall im $::form Scope, d.h. <%var%> zeigt auf $::form-
>{var}. Nochmal von der anderen Seite erläutert, innerhalb von (Web-)Templates sieht man häufiger solche Konstrukte:

Entwicklerdokumentation

94

[%- IF business %]
(... Zeig die Auswahlliste Kunden-/Lieferantentyp an)
[%- END %]

Entweder wird hier dann $::form->{business} ausgewertet oder aber der Funktion $form->parse_html_template wird
explizit noch ein zusätzlicher Hash übergeben, der dann auch in den (Web-)Templates zu Verfügung steht, bspw. so:

$form->parse_html_template("is/form_header", \%TMPL_VAR);

Innerhalb von Schleifen wird $::form->{TEMPLATE_ARRAYS}{var}[$index] bevorzugt, wenn vorhanden. Ein Bei-
spiel findet sich in SL/DO.pm, welches über alle Positionen eines Lieferscheins in Schleife läuft:

for $i (1 .. $form->{rowcount}) {
 # ...
 push @{ $form->{TEMPLATE_ARRAYS}{runningnumber} }, $position;
 push @{ $form->{TEMPLATE_ARRAYS}{number} }, $form->{"partnumber_$i"};
 push @{ $form->{TEMPLATE_ARRAYS}{description} }, $form->{"description_$i"};
 # ...
}

4.1.3.2. %::myconfig

• Das einzige Hash unter den globalen Variablen

• Wird spätestens benötigt wenn auf die Datenbank zugegriffen wird

• Wird bei jedem Request neu erstellt.

• Enthält die Userdaten des aktuellen Logins

• Sollte nicht ohne Filterung irgendwo gedumpt werden oder extern serialisiert werden, weil da auch der Datenbankzugriff für
diesen user drinsteht.

• Enthält unter anderem Datumsformat dateformat und Nummernformat numberformat

• Enthält Datenbankzugriffinformationen

%::myconfig ist im Moment der Ersatz für ein Userobjekt. Die meisten Funktionen, die etwas anhand des aktuellen Users
entscheiden müssen, befragen %::myconfig. Innerhalb der Anwendungen sind dies überwiegend die Daten, die sich unter
Programm -> Einstellungen befinden, bzw. die Informationen über den Benutzer die über die Administrator-Schnittstelle ein-
gegeben wurden.

4.1.3.3. $::locale

• Objekt der Klasse "Locale"

• Wird pro Request erstellt

• Muss auch für Tests und Scripte immer verfügbar sein.

• Cached intern über Requestgrenzen hinweg benutzte Locales

Lokalisierung für den aktuellen User. Alle Übersetzungen, Zahlen- und Datumsformatierungen laufen über dieses Objekt.

4.1.3.4. $::lxdebug

• Objekt der Klasse "LXDebug"

• Wird global gecached

Entwicklerdokumentation

95

• Muss immer verfügbar sein, in nahezu allen Funktionen

$::lxdebug stellt Debuggingfunktionen bereit, wie "enter_sub" und "leave_sub", mit denen in den alten Modulen
ein brauchbares Tracing gebaut ist, "log_time", mit der man die Wallclockzeit seit Requeststart loggen kann, sowie "mes-
sage" und "dump" mit denen man flott Informationen ins Log (tmp/kivitendo-debug.log) packen kann.

Beispielsweise so:

$main::lxdebug->message(0, 'Meine Konfig:' . Dumper (%::myconfig));
$main::lxdebug->message(0, 'Wer bin ich? Kunde oder Lieferant:' . $form->{vc});

4.1.3.5. $::auth

• Objekt der Klasse "SL::Auth"

• Wird global gecached

• Hat eine permanente DB Verbindung zur Authdatenbank

• Wird nach jedem Request resettet.

$::auth stellt Funktionen bereit um die Rechte des aktuellen Users abzufragen. Obwohl diese Informationen vom aktuellen
User abhängen wird das Objekt aus Geschwindigkeitsgründen nur einmal angelegt und dann nach jedem Request kurz resettet.

Dieses Objekt kapselt auch den gerade aktiven Mandanten. Dessen Einstellungen können über $::auth->client abgefragt
werden; Rückgabewert ist ein Hash mit den Werten aus der Tabelle auth.clients.

4.1.3.6. $::lx_office_conf

• Objekt der Klasse "SL::LxOfficeConf"

• Global gecached

• Repräsentation der config/kivitendo.conf[.default]-Dateien

Globale Konfiguration. Configdateien werden zum Start gelesen und danach nicht mehr angefasst. Es ist derzeit nicht geplant,
dass das Programm die Konfiguration ändern kann oder sollte.

Beispielsweise ist über den Konfigurationseintrag [debug] die Debug- und Trace-Log-Datei wie folgt konfiguriert und verfüg-
bar:

[debug]
file_name = /tmp/kivitendo-debug.log

ist der Key file im Programm als $::lx_office_conf->{debug}{file} erreichbar.

Warnung

Zugriff auf die Konfiguration erfolgt im Moment über Hashkeys, sind also nicht gegen Tippfehler abgesichert.

4.1.3.7. $::instance_conf

• Objekt der Klasse "SL::InstanceConfiguration"

• wird pro Request neu erstellt

Funktioniert wie $::lx_office_conf, speichert aber Daten die von der Instanz abhängig sind. Eine Instanz ist hier eine
Mandantendatenbank. Beispielsweise überprüft

Entwicklerdokumentation

96

$::instance_conf->get_inventory_system eq 'perpetual'

ob die berüchtigte Bestandsmethode zur Anwendung kommt.

4.1.3.8. $::dispatcher

• Objekt der Klasse "SL::Dispatcher"

• wird pro Serverprozess erstellt.

• enthält Informationen über die technische Verbindung zum Server

Der dritte Punkt ist auch der einzige Grund warum das Objekt global gespeichert wird. Wird vermutlich irgendwann in einem
anderen Objekt untergebracht.

4.1.3.9. $::request

• Hashref (evtl später Objekt)

• Wird pro Request neu initialisiert.

• Keine Unterstruktur garantiert.

$::request ist ein generischer Platz um Daten "für den aktuellen Request" abzulegen. Sollte nicht für action at a distance
benutzt werden, sondern um lokales memoizing zu ermöglichen, das garantiert am Ende des Requests zerstört wird.

Vieles von dem, was im moment in $::form liegt, sollte eigentlich hier liegen. Die groben Differentialkriterien sind:

• Kommt es vom User, und soll unverändert wieder an den User? Dann $::form, steht da eh schon

• Sind es Daten aus der Datenbank, die nur bis zum Ende des Requests gebraucht werden? Dann $::request

• Muss ich von anderen Teilen des Programms lesend drauf zugreifen? Dann $::request, aber Zugriff über Wrapperme-
thode

4.1.4. Ehemalige globale Variablen

Die folgenden Variablen waren einmal im Programm, und wurden entfernt.

4.1.4.1. $::cgi

• war nötig, weil cookie Methoden nicht als Klassenfunktionen funktionieren

• Aufruf als Klasse erzeugt Dummyobjekt was im Klassennamespace gehalten wird und über Requestgrenzen leaked

• liegt jetzt unter $::request->{cgi}

4.1.4.2. $::all_units

• war nötig, weil einige Funktionen in Schleifen zum Teil ein paar hundert mal pro Request eine Liste der Einheiten brauchen,
und de als Parameter durch einen Riesenstack von Funktionen geschleift werden müssten.

• Liegt jetzt unter $::request->{cache}{all_units}

• Wird nur in AM->retrieve_all_units() gesetzt oder gelesen.

4.1.4.3. %::called_subs

• wurde benutzt um callsub deep recursions abzufangen.

Entwicklerdokumentation

97

• Wurde entfernt, weil callsub nur einen Bruchteil der möglichen Rekursioenen darstellt, und da nie welche auftreten.

• komplette recursion protection wurde entfernt.

4.2. Entwicklung unter FastCGI

4.2.1. Allgemeines

Wenn Änderungen in der Konfiguration von kivitendo gemacht werden, muss der Webserver neu gestartet werden.

Bei der Entwicklung für FastCGI ist auf ein paar Fallstricke zu achten. Dadurch, dass das Programm in einer Endlosschleife
läuft, müssen folgende Aspekte beachtet werden.

4.2.2. Programmende und Ausnahmen

Betrifft die Funktionen warn, die, exit, carp und confess.

Fehler, die dass Programm normalerweise sofort beenden (fatale Fehler), werden mit dem FastCGI Dispatcher abgefangen,
um das Programm am Laufen zu halten. Man kann mit die, confess oder carp Fehler ausgeben, die dann vom Dispatcher
angezeigt werden. Die kivitendo eigene $::form-error()> tut im Prinzip das Gleiche, mit ein paar Extraoptionen. warn
und exit hingegen werden nicht abgefangen. warn wird direkt nach STDERR, also in Server Log eine Nachricht schreiben
(sofern in der Konfiguration nicht die Warnungen in das kivitendo Log umgeleitet wurden), und exit wird die Ausführung
beenden.

Prinzipiell ist es kein Beinbruch, wenn sich der Prozess beendet, fcgi wird ihn sofort neu starten. Allerdings sollte das die Aus-
nahme sein. Quintessenz: Bitte kein exit benutzen, alle anderen Exceptionmechanismen sind ok.

4.2.3. Globale Variablen

Um zu vermeiden, dass Informationen von einem Request in einen anderen gelangen, müssen alle globalen Variablen vor
einem Request sauber initialisiert werden. Das ist besonders wichtig im $::cgi und $::auth Objekt, weil diese nicht
gelöscht werden pro Instanz, sondern persistent gehalten werden.

In SL::Dispatcher gibt es einen sauber abgetrennten Block, der alle kanonischen globalen Variablen listet und erklärt. Bit-
te keine anderen einführen ohne das sauber zu dokumentieren.

Datenbankverbindungen wird noch ein Guide verfasst werden, wie man sicher geht, dass man die richtige erwischt.

4.2.4. Performance und Statistiken

Die kritischen Pfade des Programms sind die Belegmasken, und unter diesen ganz besonders die Verkaufsrechnungsmaske. Ein
Aufruf der Rechnungsmaske in kivitendo 2.4.3 stable dauert auf einem Core2duo mit 4GB Arbeitsspeicher und Ubuntu 9.10
eine halbe Sekunde. In der 2.6.0 sind es je nach Menge der definierten Variablen 1-2s. Ab der Moose/Rose::DB Version sind es
5-6s.

Mit FastCGI ist die neuste Version auf 0,26 Sekunden selbst in den kritischen Pfaden, unter 0,15 sonst.

4.3. Programmatische API-Aufrufe

4.3.1. Einführung

Es ist möglich, Funktionen in kivitendo programmatisch aus anderen Programmen aufzurufen. Dazu ist nötig, dass Authentifi-
zierungsinformationen in jedem Aufruf mitgegeben werden. Dafür gibt es zwei Methoden: die HTTP-»Basic«-Authentifizie-
rung oder die Übergabe als spziell benannte GET-Parameter. Neben den Authentifizierungsinformationen muss auch der zu
verwendende Mandant übergeben werden.

Entwicklerdokumentation

98

4.3.2. Wahl des Mandanten
Der zu verwendende Mandant kann als Parameter {AUTH}client_id mit jedem Request mitgeschickt werden. Der Wert
muss dabei die Datenbank-ID des Mandanten sein. kivitendo prüft, ob der Account, der über die Authentifizierungsinformatio-
nen übergeben wurde, Zugriff auf den angegebenen Mandanten hat.

Wird in einem Request kein Mandant mitgegeben, so wird derjenige Mandant genommen, wer als Standardmandant markiert
wurde. Gibt es keinen solchen, kommt es zu einer Fehlermeldung.

4.3.3. HTTP-»Basic«-Authentifizierung
Für diese Methode muss jedem Request der bekannte HTTP-Header Authorization mitgeschickt werden (siehe RFC
76171). Unterstützt wird ausschließlich die »Basic«-Methode. Loginname und Passwort werden bei dieser Methode durch
einen Doppelpunkt getrennt und Base64-encodiert im genannten HTTP-Header übertragen.

Diese Informationen müssen einen vorhandenen Account benennen. kivitendo prüft genau wie bei Benutzung über den Web-
browser, ob dieser Account Zugriff auf den Mandanten sowie auf die angeforderte Funktion hat.

Da die Logininformationen im Klartext im Request stehen, sollte der Zugriff auf kivitendo ausschließlich über HTTPS ver-
schlüsselt erfolgen.

4.3.4. Authentifizierung mit Parametern
Für diese Methode müssen jedem Request zwei Parameter mitgegeben werden: {AUTH}login und {AUTH}password.
Diese Informationen müssen einen vorhandenen Account benennen. kivitendo prüft genau wie bei Benutzung über den Web-
browser, ob dieser Account Zugriff auf den Mandanten sowie auf die angeforderte Funktion hat.

Da die Logininformationen im Klartext im Request stehen, sollte der Zugriff auf kivitendo ausschließlich über HTTPS ver-
schlüsselt erfolgen.

Anmerkung
Die Verwendung dieser Methode ist veraltet. Statt dessen sollte die oben erwähnte HTTP-»Basic«-Authentifizie-
rung verwendet werden.

4.3.5. Beispiele
Das folgende Beispiel nutzt das Kommandozeilenprogramm »curl« und ruft die Funktion auf, die eine vorhandene Telefon-
nummer in den Ansprechpersonen sucht und dazu Informationen zurückliefert. Dabei wird die HTTP-»Basic«-Authentifizie-
rung genutzt.

$ curl --silent --user 'jdoe:SecretPassword!' \
 'https://…/controller.pl?action=PhoneNumber/look_up&number=053147110815'

4.4. SQL-Upgradedateien

4.4.1. Einführung
Datenbankupgrades werden über einzelne Upgrade-Scripte gesteuert, die sich im Verzeichnis sql/Pg-upgrade2 befinden.
In diesem Verzeichnis muss pro Datenbankupgrade eine Datei existieren, die neben den eigentlich auszuführenden SQL- oder
Perl-Befehlen einige Kontrollinformationen enthält.

Kontrollinformationen definieren Abhängigkeiten und Prioritäten, sodass Datenbankscripte zwar in einer sicheren Reihenfol-
ge ausgeführt werden (z.B. darf ein ALTER TABLE erst ausgeführt werden, wenn die Tabelle mit CREATE TABLE angelegt
wurde), diese Reihenfolge aber so flexibel ist, dass man keine Versionsnummern braucht.

1 https://tools.ietf.org/html/rfc7617

https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617
https://tools.ietf.org/html/rfc7617

Entwicklerdokumentation

99

kivitendo merkt sich dabei, welches der Upgradescripte in sql/Pg-upgrade2 bereits durchgeführt wurde und führt diese
nicht erneut aus. Dazu dient die Tabelle "schema_info", die bei der Anmeldung automatisch angelegt wird.

4.4.2. Format der Kontrollinformationen
Die Kontrollinformationen sollten sich am Anfang der jeweiligen Upgradedatei befinden. Jede Zeile, die Kontrollinformatio-
nen enthält, hat dabei das folgende Format:

Für SQL-Upgradedateien:

-- @key: value

Für Perl-Upgradedateien:

@key: value

Leerzeichen vor "value" werden entfernt.

Die folgenden Schlüsselworte werden verarbeitet:

tag
Wird zwingend benötigt. Dies ist der "Name" des Upgrades. Dieser "tag" kann von anderen Kontrolldateien in ihren
Abhängigkeiten verwendet werden (Schlüsselwort "depends"). Der "tag" ist auch der Name, der in der Datenbank einge-
tragen wird.

Normalerweise sollte die Kontrolldatei genau so heißen wie der "tag", nur mit der Endung ".sql" bzw. "pl".

Ein Tag darf nur aus alphanumerischen Zeichen sowie den Zeichen _ - () bestehen. Insbesondere sind Leerzeichen nicht
erlaubt und sollten stattdessen mit Unterstrichen ersetzt werden.

charset
Empfohlen. Gibt den Zeichensatz an, in dem das Script geschrieben wurde, z.B. "UTF-8". Aus Kompatibilitätsgründen
mit alten Upgrade-Scripten wird bei Abwesenheit des Tags für SQL-Upgradedateien der Zeichensatz "ISO-8859-15"
angenommen. Perl-Upgradescripte hingegen müssen immer in UTF-8 encodiert sein und sollten demnach auch ein "use
utf8;" enthalten.

description
Benötigt. Eine Beschreibung, was in diesem Update passiert. Diese wird dem Benutzer beim eigentlichen Datenbankup-
date angezeigt. Während der Tag in Englisch gehalten sein sollte, sollte die Beschreibung auf Deutsch erfolgen.

depends
Optional. Eine mit Leerzeichen getrennte Liste von "tags", von denen dieses Upgradescript abhängt. kivitendo stellt sicher,
dass die in dieser Liste aufgeführten Scripte bereits durchgeführt wurden, bevor dieses Script ausgeführt wird.

Abhängigkeiten werden rekursiv betrachtet. Wenn also ein Script "b" existiert, das von Änderungen in "a" abhängt, und
eine neue Kontrolldatei für "c" erstellt wird, die von Änderungen in "a" und "b" abhängt, so genügt es, in "c" nur den Tag
"b" als Abhängigkeit zu definieren.

Es ist nicht erlaubt, sich selbst referenzierende Abhängigkeiten zu definieren (z.B. "a" -> "b", "b" -> "c" und "c" -> "a").

priority
Optional. Ein Zahlenwert, der die Reihenfolge bestimmt, in der Scripte ausgeführt werden, die die gleichen Abhängig-
keitstiefen besitzen. Fehlt dieser Parameter, so wird der Wert 1000 benutzt.

Dies ist reine Kosmetik. Für echte Reihenfolgen muss "depends" benutzt werden. kivitendo sortiert die auszuführenden
Scripte zuerst nach der Abhängigkeitstiefe (wenn "z" von "y" abhängt und "y" von "x", so hat "z" eine Abhängigkeitstiefe
von 2, "y" von 1 und "x" von 0. "x" würde hier zuerst ausgeführt, dann "y", dann "z"), dann nach der Priorität und bei glei-
cher Priorität alphabetisch nach dem "tag".

ignore
Optional. Falls der Wert auf 1 (true) steht, wird das Skript bei der Anmeldung ignoriert und entsprechend nicht ausgeführt.

Entwicklerdokumentation

100

4.4.3. Format von in Perl geschriebenen Datenbankup-
gradescripten
In Perl geschriebene Datenbankscripte werden nicht einfach so ausgeführt sondern müssen sich an gewisse Konventionen hal-
ten. Dafür bekommen sie aber auch einige Komfortfunktionen bereitgestellt.

Ein Upgradescript stellt dabei eine vollständige Objektklasse dar, die vom Elternobjekt "SL::DBUpgrade2::Base" erben
und eine Funktion namens "run" zur Verfügung stellen muss. Das Script wird ausgeführt, indem eine Instanz dieser Klasse
erzeugt und darauf die erwähnte "run" aufgerufen wird.

Zu beachten ist, dass sich der Paketname der Datei aus dem Wert für "@tag" ableitet. Dabei werden alle Zeichen, die in
Paketnamen ungültig wären (gerade Bindestriche), durch Unterstriche ersetzt. Insgesamt sieht der Paketname wie folgt aus:
"SL::DBUpgrade2::tag".

Welche Komfortfunktionen zur Verfügung stehen, erfahren Sie in der Perl-Dokumentation zum oben genannten Modul; aufzu-
rufen mit "perldoc SL/DBUpgrade2/Base.pm".

Ein Mindestgerüst eines gültigen Perl-Upgradescriptes sieht wie folgt aus:

@tag: beispiel-upgrade-file42
@description: Ein schönes Beispielscript
@depends: release_3_1_0
package SL::DBUpgrade2::beispiel_upgrade_file42;

use strict;
use utf8;

use parent qw(SL::DBUpgrade2::Base);

sub run {
 my ($self) = @_;

 # hier Aktionen ausführen

 return 1;
}

1;

4.4.4. Hilfsscript dbupgrade2_tool.pl
Um die Arbeit mit den Abhängigkeiten etwas zu erleichtern, existiert ein Hilfsscript namens "scripts/
dbupgrade2_tool.pl". Es muss aus dem kivitendo-ERP-Basisverzeichnis heraus aufgerufen werden. Dieses Tool liest
alle Datenbankupgradescripte aus dem Verzeichnis sql/Pg-upgrade2 aus. Es benutzt dafür die gleichen Methoden wie
kivitendo selber, sodass alle Fehlersituationen von der Kommandozeile überprüft werden können.

Wird dem Script kein weiterer Parameter übergeben, so wird nur eine Überprüfung der Felder und Abhängigkeiten vorgenom-
men. Man kann sich aber auch Informationen auf verschiedene Art ausgeben lassen:

• Listenform: "./scripts/dbupgrade2_tool.pl --list"

Gibt eine Liste aller Scripte aus. Die Liste ist in der Reihenfolge sortiert, in der kivitendo die Scripte ausführen würde. Es
werden neben der Listenposition der Tag, die Abhängigkeitstiefe und die Priorität ausgegeben.

• Baumform: "./scripts/dbupgrade2_tool.pl --tree"

Listet alle Tags in Baumform basierend auf den Abhängigkeiten auf. Die "Wurzelknoten" sind dabei die Scripte, von denen
keine anderen abhängen. Die Unterknoten sind Scripte, die beim übergeordneten Script als Abhängigkeit eingetragen sind.

Entwicklerdokumentation

101

• Umgekehrte Baumform: "./scripts/dbupgrade2_tool.pl --rtree"

Listet alle Tags in Baumform basierend auf den Abhängigkeiten auf. Die "Wurzelknoten" sind dabei die Scripte mit der
geringsten Abhängigkeitstiefe. Die Unterknoten sind Scripte, die das übergeordnete Script als Abhängigkeit eingetragen
haben.

• Baumform mit Postscriptausgabe: "./scripts/dbupgrade2_tool.pl --graphviz"

Benötigt das Tool "graphviz", um mit seiner Hilfe die umgekehrte Baumform in eine Postscriptdatei namens
"db_dependencies.ps" auszugeben. Dies ist vermutlich die übersichtlichste Form, weil hierbei jeder Knoten nur ein-
mal ausgegeben wird. Bei den Textmodusbaumformen hingegen können Knoten und all ihre Abhängigkeiten mehrfach aus-
gegeben werden.

• Scripte, von denen kein anderes Script abhängt: "./scripts/dbupgrade2_tool.pl --nodeps"

Listet die Tags aller Scripte auf, von denen keine anderen Scripte abhängen.

4.5. Translations and languages

4.5.1. Introduction

Anmerkung

Dieser Abschnitt ist in Englisch geschrieben, um internationalen Übersetzern die Arbeit zu erleichtern.

This section describes how localization packages in kivitendo are built. Currently the only language fully supported is German,
and since most of the internal messages are held in English the English version is usable too.

4.5.2. Character set

All files included in a language pack must use UTF-8 as their encoding.

4.5.3. File structure

The structure of locales in kivitendo is:

kivitendo/locale/<langcode>/

where <langcode> stands for an abbreviation of the language package. The builtin packages use two letter ISO 639-12 codes,
but the actual name is not relevant for the program and can easily be extended to IETF language tags3 (i.e. "en_GB"). In fact
the original language packages from SQL Ledger are named in this way.

In such a language directory the following files are recognized:

LANGUAGE
This file is mandatory.

The LANGUAGE file contains the self descripted name of the language. It should contain a native representation first, and
in parenthesis an english translation after that. Example:

Deutsch (German)

all
This file is mandatory.

2 http://en.wikipedia.org/wiki/ISO_639-1
3 http://en.wikipedia.org/wiki/IETF_language_tag

http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/IETF_language_tag
http://en.wikipedia.org/wiki/ISO_639-1
http://en.wikipedia.org/wiki/IETF_language_tag

Entwicklerdokumentation

102

The central translation file. It is essentially an inline Perl script autogenerated by locales.pl. To generate it, generate the
directory and the two files mentioned above, and execute the following command:

scripts/locales.pl <langcode>

Otherwise you can simply copy one of the other languages. You will be told how many are missing like this:

$ scripts/locales.pl en
English - 0.6% - 2015/2028 missing

A file named "missing" will be generated and can be edited. You can also edit the "all" file directly. Edit everything
you like to fit the target language and execute locales.pl again. See how the missing words get fewer.

Num2text
Legacy code from SQL Ledger. It provides a means for numbers to be converted into natural language, like 1523 =>
one thousand five hundred twenty three. If you want to provide it, it must be inlinable Perl code which
provides a num2text sub. If an init sub exists it will be executed first.

Only used in the check and receipt printing module.

special_chars
kivitendo comes with a lot of interfaces to different formats, some of which are rather picky with their accepted charset.
The special_chars file contains a listing of chars not suited for different file format and provides substitutions. It is
written in "Simple Ini" style, containing a block for every file format.

First entry should be the order of substitution for entries as a whitespace separated list. All entries are interpolated, so \n,
\x20 and \\ all work.

After that every entry is a special char that should be translated when writing text into such a file.

Example:

[Template/XML]
order=& < > \n
&=&
<=<
>=>
\n=

Note the importance of the order in this example. Substituting < and > befor & would lead to $gt; become &gt;

For a list of valid formats, see the German special_chars entry. As of this writing the following are recognized:

HTML
URL@HTML
Template/HTML
Template/XML
Template/LaTeX
Template/OpenDocument
filenames

The last of which is very machine dependent. Remember that a lot of characters are forbidden by some filesystems, for
example MS Windows doesn't like ':' in its files where Linux doesn't mind that. If you want the files created with your lan-
guage pack to be portable, find all chars that could cause trouble.

missing
This file is not a part of the language package itself.

This is a file generated by scripts/locales.pl while processing your locales. It's only to have the missing entries singled out
and does not belong to a language package.

Entwicklerdokumentation

103

lost
This file is not a part of the language package itself.

Another file generated by scripts/locales.pl. If for any reason a translation does not appear anymore and can be deleted, it
gets moved here. The last 50 or so entries deleted are saved here in case you made a typo, so that you don't have to transla-
te everything again. If a tranlsation is missing, the lost file is checked first. If you maintain a language package, you might
want to keep this safe somewhere.

more/all
This subdir and file is not a part of the language package itself.

If the directory more exists and contains a file called all it will be parsed in addition to the mandatory all (see above). The
file is useful if you want to change some translations for the current installation without conflicting further upgrades. The
file is not autogenerated and has the same format as the all, but needs another key (more_texts). See the german translation
for an example or copy the following code:

#!/usr/bin/perl
-*- coding: utf-8; -*-
vim: fenc=utf-8

use utf8;

These are additional texts for custom translations.
The format is the same as for the normal file all, only
with another key (more_texts instead of texts).
The file has the form of 'english text' => 'foreign text',

$self->{more_texts} = {

 'Ship via' => 'Terms of delivery',
 'Shipping Point' => 'Delivery time',
}

4.6. Die kivitendo-Test-Suite

4.6.1. Einführung
kivitendo enthält eine Suite für automatisierte Tests. Sie basiert auf dem Standard-Perl-Modul Test::More.

Die grundlegenden Fakten sind:

• Alle Tests liegen im Unterverzeichnis t/.

• Ein Script (bzw. ein Test) in t/ enthält einen oder mehrere Testfälle.

• Alle Dateinamen von Tests enden auf .t. Es sind selbstständig ausführbare Perl-Scripte.

• Die Test-Suite besteht aus der Gesamtheit aller Tests, sprich aller Scripte in t/, deren Dateiname auf .t endet.

4.6.2. Voraussetzungen
Für die Ausführung werden neben den für kivitendo eh schon benötigten Module noch weitere Perl-Module benötigt. Diese
sind:

• Test::Deep (Debian-Paketname: libtest-deep-perl; Fedora: perl-Test-Deep; openSUSE: perl-Test-
Deep)

Entwicklerdokumentation

104

• Test::Exception (Debian-Paketname: libtest-exception-perl; Fedora: perl-Test-Exception;
openSUSE: perl-Test-Exception)

• Test::Output (Debian-Paketname: libtest-output-perl; Fedora: perl-Test-Output; openSUSE: perl-
Test-Output)

• Test::Harness 3.0.0 oder höher. Dieses Modul ist ab Perl 5.10.1 Bestandteil der Perl-Distribution und kann für frühere
Versionen aus dem CPAN4 bezogen werden.

• LWP::Simple aus dem Paket libwww-perl (Debian-Panetname: libwww-perl; Fedora: perl-libwww-perl;
openSUSE: perl-libwww-perl)

• URI::Find (Debian-Panetname: liburi-find-perl; Fedora: perl-URI-Find; openSUSE: perl-URI-Find)

• Sys::CPU (Debian-Panetname: libsys-cpu-perl; Fedora und openSUSE: nicht vorhanden)

• Thread::Pool::Simple (Debian-Panetname: libthread-pool-simple-perl; Fedora und openSUSE: nicht
vorhanden)

Weitere Voraussetzung ist, dass die Testsuite ihre eigene Datenbank anlegen kann, um Produktivdaten nicht zu gefährden. Dazu
müssen in der Konfigurationsdatei im Abschnit testing/database Datenbankverbindungsparameter angegeben werden.
Der hier angegebene Benutzer muss weiterhin das Recht haben, Datenbanken anzulegen und zu löschen.

Der so angegebene Benutzer muss nicht zwingend über Super-User-Rechte verfügen. Allerdings gibt es einige Daten-
bank-Upgrades, die genau diese Rechte benötigen. Für den Fall kann man in diesem Konfigurationsabschnitt einen weiteren
Benutzeraccount angeben, der dann über Super-User-Rechte verfügt, und mit dem die betroffenen Upgrades durchgeführt wer-
den. In der Beispiel-Konfigurationsdatei finden Sie die benötigten Parameter.

4.6.3. Existierende Tests ausführen

Es gibt mehrere Möglichkeiten zum Ausführen der Tests: entweder, man lässt alle Tests auf einmal ausführen, oder man führt
gezielt einzelne Scripte aus. Für beide Fälle gibt es das Helferscript t/test.pl.

Will man die komplette Test-Suite ausführen, so muss man einfach nur t/test.pl ohne weitere Parameter aus dem kiviten-
do-Basisverzeichnis heraus ausführen.

Um einzelne Test-Scripte auszuführen, übergibt man deren Namen an t/test.pl. Beispielsweise:

t/test.pl t/form/format_amount.t t/background_job/known_jobs.t

4.6.4. Bedeutung der verschiedenen Test-Scripte

Die Test-Suite umfasst Tests sowohl für Funktionen als auch für Programmierstil. Einige besonders zu erwähnende, weil auch
während der Entwicklung nützliche Tests sind:

• t/001compile.t -- compiliert alle Quelldateien und bricht bei Fehlern sofort ab

• t/002goodperl.t -- überprüft alle Perl-Dateien auf Anwesenheit von 'use strict'-Anweisungen

• t/003safesys.t -- überprüft Aufrufe von system() und exec() auf Gültigkeit

• t/005no_tabs.t -- überprüft, ob Dateien Tab-Zeichen enthalten

• t/006spelling.t -- sucht nach häufigen Rechtschreibfehlern

• t/011pod.t -- überprüft die Syntax von Dokumentation im POD-Format auf Gültigkeit

Weitere Test-Scripte überprüfen primär die Funktionsweise einzelner Funktionen und Module.

4 http://www.cpan.org

http://www.cpan.org
http://www.cpan.org

Entwicklerdokumentation

105

4.6.5. Neue Test-Scripte erstellen
Es wird sehr gern gesehen, wenn neue Funktionalität auch gleich mit einem Test-Script abgesichert wird. Auch bestehende
Funktion darf und soll ausdrücklich nachträglich mit Test-Scripten abgesichert werden.

4.6.5.1. Ideen für neue Test-Scripte, die keine konkreten Funktionen
testen

Ideen, die abgesehen von Funktionen noch nicht umgesetzt wurden:

• Überprüfung auf fehlende symbolische Links

• Suche nach Nicht-ASCII-Zeichen in Perl-Code-Dateien (mit gewissen Einschränkungen wie das Erlauben von deutschen
Umlauten)

• Test auf DOS-Zeilenenden (\r\n anstelle von nur \n)

• Überprüfung auf Leerzeichen am Ende von Zeilen

• Test, ob alle zu übersetzenden Strings in locale/de/all vorhanden sind

• Test, ob alle Webseiten-Templates in templates/webpages mit vom Perl-Modul Template compiliert werden können

4.6.5.2. Konvention für Verzeichnis- und Dateinamen

Es gibt momentan eine wenige Richtlinien, wie Test-Scripte zu benennen sind. Bitte die folgenden Punkte als Richtlinie
betrachten und ihnen soweit es geht folgen:

• Die Dateiendung muss .t lauten.

• Namen sind englisch, komplett klein geschrieben und einzelne Wörter mit Unterstrichten getrennt (beispielsweise
bad_function_params.t).

• Unterverzeichnisse sollten grob nach dem Themenbereich benannt sein, mit dem sich die Scripte darin befassen (beispiels-
weise background_jobs für Tests rund um Hintergrund-Jobs).

• Test-Scripte sollten einen überschaubaren Bereich von Funktionalität testen, der logisch zusammenhängend ist (z.B. nur
Tests für eine einzelne Funktion in einem Modul). Lieber mehrere Test-Scripte schreiben.

4.6.5.3. Minimales Skelett für eigene Scripte

Der folgenden Programmcode enthält das kleinstmögliche Testscript und kann als Ausgangspunkt für eigene Tests verwendet
werden:

use Test::More tests => 0;

use lib 't';

use Support::TestSetup;

Support::TestSetup::login();

Wird eine vollständig initialisierte kivitendo-Umgebung benötigt (Stichwort: alle globalen Variablen wie $::auth, $::form
oder $::lxdebug), so muss in der Konfigurationsdatei config/kivitendo.conf im Abschnitt testing.login ein
gültiger Login-Name eingetragen sein. Dieser wird für die Datenbankverbindung benötigt.

Wir keine vollständig initialisierte Umgebung benötigt, so kann die letzte Zeile

Support::TestSetup::login();

weggelassen werden, was die Ausführungszeit des Scripts leicht verringert.

Entwicklerdokumentation

106

4.7. Stil-Richtlinien
Die folgenden Regeln haben das Ziel, den Code möglichst gut les- und wartbar zu machen. Dazu gehört zum Einen, dass der
Code einheitlich eingerückt ist, aber auch, dass Mehrdeutigkeit so weit es geht vermieden wird (Stichworte "Klammern" oder
"Hash-Keys").

Diese Regeln sind keine Schikane sondern erleichtern allen das Leben!

Jeder, der einen Patch schickt, sollte seinen Code vorher überprüfen. Einige der Regeln lassen sich automatisch überprüfen,
andere nicht.

1. Es werden keine echten Tabs sondern Leerzeichen verwendet.

2. Die Einrückung beträgt zwei Leerzeichen. Beispiel:

foreach my $row (@data) {
 if ($flag) {
 # do something with $row
 }

 if ($use_modules) {
 $row->{modules} = MODULE->retrieve(
 id => $row->{id},
 date => $use_now ? localtime() : $row->{time},
);
 }

 $report->add($row);
}

3. Öffnende geschweifte Klammern befinden sich auf der gleichen Zeile wie der letzte Befehl. Beispiele:

sub debug {
 ...
}

oder

if ($form->{item_rows} > 0) {
 ...
}

4. Schließende geschweifte Klammern sind so weit eingerückt wie der Befehl / die öffnende schließende Klammer, die den
Block gestartet hat, und nicht auf der Ebene des Inhalts. Die gleichen Beispiele wie bei 3. gelten.

5. Die Wörter "else", "elsif", "while" befinden sich auf der gleichen Zeile wie schließende geschweifte Klammern. Bei-
spiele:

if ($form->{sum} > 1000) {
 ...
} elsif ($form->{sum} > 0) {
 ...
} else {
 ...
}

do {
 ...
} until ($a > 0);

Entwicklerdokumentation

107

6. Parameter von Funktionsaufrufen müssen mit runden Klammern versehen werden. Davon nicht betroffen sind interne Perl-
Funktionen, und grep-ähnliche Operatoren. Beispiel:

$main::lxdebug->message("Could not find file.");
%options = map { $_ => 1 } grep { !/^#/ } @config_file;

7. Verschiedene Klammern, Ihre Ausdrücke und Leerzeichen:

Generell gilt: Hashkeys und Arrayindices sollten nicht durch Leerzeichen abgesetzt werden. Logische Klammerungen eben-
sowenig, Blöcke schon. Beispiel:

if (($form->{debug} == 1) && ($form->{sum} - 100 < 0)) {
 ...
}

$array[$i + 1] = 4;
$form->{sum} += $form->{"row_$i"};
$form->{ $form->{index} } += 1;

map { $form->{sum} += $form->{"row_$_"} } 1..$rowcount;

8. Mehrzeilige Befehle

a. Werden die Parameter eines Funktionsaufrufes auf mehrere Zeilen aufgeteilt, so sollten diese bis zu der Spalte eingerückt
werden, in der die ersten Funktionsparameter in der ersten Zeile stehen. Beispiel:

$sth = $dbh->prepare("SELECT * FROM some_table WHERE col = ?",
 $form->{some_col_value});

b. Ein Spezialfall ist der ternäre Operator "?:", der am besten in einer übersichtlichen Tabellenstruktur organisiert wird. Bei-
spiel:

my $rowcount = $form->{"row_$i"} ? $i
 : $form->{oldcount} ? $form->{oldcount} + 1
 : $form->{rowcount} - $form->{rowbase};

9. Kommentare

a. Kommentare, die alleine in einer Zeile stehen, sollten soweit wie der Code eingerückt sein.

b. Seitliche hängende Kommentare sollten einheitlich formatiert werden.

c. Sämtliche Kommentare und Sonstiges im Quellcode ist bitte auf Englisch zu verfassen. So wie ich keine Lust habe, fran-
zösischen Quelltext zu lesen, sollte auch der kivitendo Quelltext für nicht-Deutschsprachige lesbar sein. Beispiel:

my $found = 0;
while (1) {
 last if $found;

 # complicated check
 $found = 1 if //
}

$i = 0 # initialize $i
$n = $i; # save $i
$i *= $const; # do something crazy
$i = $n; # recover $i

10.Hashkeys sollten nur in Anführungszeichen stehen, wenn die Interpolation gewünscht ist. Beispiel:

$form->{sum} = 0;

Entwicklerdokumentation

108

$form->{"row_$i"} = $form->{"row_$i"} - 5;
$some_hash{42} = 54;

11.Die maximale Zeilenlänge ist nicht beschränkt. Zeilenlängen unterhalb von 79 Zeichen helfen unter bestimmten Bedingun-
gen, aber wenn die Lesbarkeit unter kurzen Zeilen leidet (wie zum Biespiel in grossen Tabellen), dann ist Lesbarkeit vorzu-
ziehen.

Als Beispiel sei die Funktion print_options aus bin/mozilla/io.pl angeführt.

12.Trailing Whitespace, d.h. Leerzeichen am Ende von Zeilen sind unerwünscht. Sie führen zu unnötigen Whitespaceänderun-
gen, die diffs verfälschen.

Emacs und vim haben beide recht einfache Methoden zur Entfernung von trailing whitespace. Emacs kennt das Kommande
nuke-trailing-whitespace, vim macht das gleiche manuell über :%s/\s\+$//e Mit :au BufWritePre * :%s/\s
\+$//e wird das an Speichern gebunden.

13.Es wird kein perltidy verwendet.

In der Vergangenheit wurde versucht, perltidy zu verwenden, um einen einheitlichen Stil zu erlangen. Es hat sich aber
gezeigt, dass perltidys sehr eigenwilliges Verhalten, was Zeilenumbrüche angeht, oftmals gut formatierten Code zerstört.
Für den Interessierten sind hier die perltidy-Optionen, die grob den beschriebenen Richtlinien entsprechen:

-syn -i=2 -nt -pt=2 -sbt=2 -ci=2 -ibc -hsc -noll -nsts -nsfs -asc -dsm
-aws -bbc -bbs -bbb -mbl=1 -nsob -ce -nbl -nsbl -cti=0 -bbt=0 -bar -l=79
-lp -vt=1 -vtc=1

14.STDERR ist tabu. Unkonditionale Debugmeldungen auch.

kivitendo bietet mit dem Modul LXDebug einen brauchbaren Trace-/Debug-Mechanismus. Es gibt also keinen Grund, nach
STDERR zu schreiben.

Die LXDebug-Methode "message" nimmt als ersten Paramter außerdem eine Flagmaske, für die die Meldung angezeigt
wird, wobei "0" immer angezeigt wird. Solche Meldungen sollten nicht eingecheckt werden und werden in den meisten Fäl-
len auch vom Repository zurückgewiesen.

15.Alle neuen Module müssen use strict verwenden.

$form, $auth, $locale, $lxdebug und %myconfig werden derzeit aus dem main package importiert (siehe Globale
Variablen [92]. Alle anderen Konstrukte sollten lexikalisch lokal gehalten werden.

4.8. Dokumentation erstellen

4.8.1. Einführung

Diese Dokumentation ist in DocBook™ XML geschrieben. Zum Bearbeiten reicht grundsätzlich ein Text-Editor. Mehr Kom-
fort bekommt man, wenn man einen dedizierten XML-fähigen Editor nutzt, der spezielle Unterstützung für DocBook™ mit-
bringt. Wir empfehlen dafür den XMLmind XML Editor5, der bei nicht kommerzieller Nutzung kostenlos ist.

4.8.2. Benötigte Software

Bei DocBook™ ist Prinzip, dass ausschließlich die XML-Quelldatei bearbeitet wird. Aus dieser werden dann mit entspre-
chenden Stylesheets andere Formate wie PDF oder HTML erzeugt. Bei kivitendo übernimmt diese Aufgabe das Shell-Script
scripts/build_doc.sh.

Das Script benötigt zur Konvertierung verschiedene Softwarekomponenten, die im normalen kivitendo-Betrieb nicht benötigt
werden:
5 http://www.xmlmind.com/xmleditor/

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/

Entwicklerdokumentation

109

• Java6 in einer halbwegs aktuellen Version

• Das Java-Build-System Apache Ant7

• Das Dokumentations-System Dobudish für DocBook™ 4.5, eine Zusammenstellung diverser Stylesheets und Grafiken zur
Konvertierung von DocBook™ XML in andere Formate. Das Paket, das benötigt wird, ist zum Zeitpunkt der Dokumentati-
onserstellung dobudish-nojre-1.1.4.zip, aus auf code.google.com8 bereitsteht.

Apache Ant sowie ein dazu passendes Java Runtime Environment sind auf allen gängigen Plattformen verfügbar. Beispiel für
Debian/Ubuntu:

apt-get install ant default-jre

Nach dem Download von Dobudish muss Dobudish im Unterverzeichnis kivitendo-erp/doc/build entpackt werden.
Beispiel unter der Annahme, das Dobudish™ in $HOME/Downloads heruntergeladen wurde:

cd kivitendo-erp/doc/build
unzip $HOME/Downloads/dobudish-nojre-1.1.4.zip

Damit auf Dobudish zugegriffen werden kann, muss ein Link mit dem Namen dobudish erstellt werden, der auf den Ordner
dobudish-nojre-1.1.4 zeigt.

cd kivitendo-erp/doc/build
ln -sf dobudish-1.1.4 dobudish

4.8.3. PDFs und HTML-Seiten erstellen
Die eigentliche Konvertierung erfolgt nach Installation der benötigten Software mit einem einfachen Aufruf direkt aus dem
kivitendo-Installationsverzeichnis heraus:

./scripts/build_doc.sh

4.8.4. Einchecken in das Git-Repository
Sowohl die XML-Datei als auch die erzeugten PDF- und HTML-Dateien sind Bestandteil des Git-Repositories. Daraus folgt,
dass nach Änderungen am XML die PDF- und HTML-Dokumente ebenfalls gebaut und alles zusammen in einem Commit ein-
gecheckt werden sollten.

Die "dobudish"-Verzeichnisse bzw. symbolischen Links gehören hingegen nicht in das Repository.

6 http://www.oracle.com/technetwork/java/index.html
7 http://ant.apache.org/
8 https://code.google.com/archive/p/dobudish/downloads

http://www.oracle.com/technetwork/java/index.html
http://ant.apache.org/
https://code.google.com/archive/p/dobudish/downloads
http://www.oracle.com/technetwork/java/index.html
http://ant.apache.org/
https://code.google.com/archive/p/dobudish/downloads

	kivitendo 3.9.1: Installation, Konfiguration, Entwicklung
	Inhaltsverzeichnis
	Kapitel 1. Aktuelle Hinweise
	Kapitel 2. Installation und Grundkonfiguration
	2.1. Übersicht
	2.2. Benötigte Software und Pakete
	2.2.1. Betriebssystem
	2.2.2. Benötigte Perl-Pakete installieren
	2.2.2.1. Debian und Ubuntu
	2.2.2.2. Fedora
	2.2.2.3. openSUSE Leap 15.4 und SUSE Linux Enterprise Server 15

	2.2.3. Andere Pakete installieren

	2.3. Installation mittels Ansible auf Ubuntu 22.04
	2.4. Manuelle Installation des Programmpaketes
	2.4.1. Installation mit git
	2.4.2. Installation über die Github Website
	2.4.3. Restliche Verzeichnisse ändern und bearbeiten

	2.5. kivitendo-Konfigurationsdatei
	2.5.1. Einführung
	2.5.2. Abschnitte und Parameter
	2.5.3. Versionen vor 2.6.3

	2.6. Anpassung der PostgreSQL-Konfiguration
	2.6.1. Zeichensätze/die Verwendung von Unicode/UTF-8
	2.6.2. Änderungen an Konfigurationsdateien
	2.6.3. Erweiterung für servergespeicherte Prozeduren
	2.6.4. Erweiterung für Trigram Prozeduren
	2.6.5. Datenbankbenutzer anlegen

	2.7. Webserver-Konfiguration
	2.7.1. Grundkonfiguration mittels CGI
	2.7.2. Konfiguration für FastCGI/FCGI
	2.7.2.1. Was ist FastCGI?
	2.7.2.2. Warum FastCGI?
	2.7.2.3. Getestete Kombinationen aus Webservern und Plugin
	2.7.2.4. Konfiguration des Webservers

	2.7.3. Authentifizierung mittels HTTP Basic Authentication
	2.7.4. Aktivierung von mod_rewrite/directory_match für git basierte Installationen
	2.7.5. Weitergehende Konfiguration
	2.7.6. Aktivierung von Apache2 modsecurity

	2.8. Der Task-Server
	2.8.1. Verfügbare und notwendige Konfigurationsoptionen
	2.8.2. Konfiguration der Mandanten für den Task-Server
	2.8.3. Automatisches Starten des Task-Servers beim Booten
	2.8.3.1. SystemV-basierende Systeme (z.B. ältere Debian, ältere openSUSE, ältere Fedora)
	2.8.3.2. Upstart-basierende Systeme (z.B. Ubuntu bis 14.04)
	2.8.3.3. systemd-basierende Systeme (z.B. neure openSUSE, neuere Fedora, neuere Ubuntu und neuere Debians)

	2.8.4. Wie der Task-Server gestartet und beendet wird

	2.9. Konfiguration der Hintergrund-Jobs
	2.9.1. SetNumberRange
	2.9.2. ImportRecordEmails

	2.10. Benutzerauthentifizierung und Administratorpasswort
	2.10.1. Grundlagen zur Benutzerauthentifizierung
	2.10.2. Administratorpasswort
	2.10.3. Authentifizierungsdatenbank
	2.10.4. Passwortüberprüfung
	2.10.5. Name des Session-Cookies
	2.10.6. Anlegen der Authentifizierungsdatenbank

	2.11. Mandanten-, Benutzer- und Gruppenverwaltung
	2.11.1. Zusammenhänge
	2.11.2. Mandanten, Benutzer und Gruppen
	2.11.3. Datenbanken anlegen
	2.11.4. Gruppen anlegen
	2.11.5. Benutzer anlegen
	2.11.6. Mandanten anlegen

	2.12. Drucker- und Systemverwaltung
	2.12.1. Druckeradministration
	2.12.2. System sperren / entsperren

	2.13. E-Mail
	2.13.1. E-Mail-Versand aus kivitendo heraus
	2.13.1.1. Versand über lokalen E-Mail-Server
	2.13.1.2. Versand über einen SMTP-Server

	2.13.2. Versendete E-Mails über IMAP exportieren
	2.13.3. E-Mails in kivitendo importieren

	2.14. Drucken mit kivitendo
	2.14.1. Vorlagenverzeichnis anlegen
	2.14.2. Der Druckvorlagensatz marei
	2.14.2.1. Quickstart – Wo kann was angepasst werden?
	2.14.2.2. Aufbau
	2.14.2.3. Mandant*innen / Firma
	2.14.2.4. Identitäten
	2.14.2.5. Währungen/Konten
	2.14.2.6. Briefbogen/Logos
	2.14.2.7. Fußzeile
	2.14.2.8. Seitenstil/Basislayout
	2.14.2.9. Absenderergänzung
	2.14.2.10. Allgemeine TeXnische Hinweise
	2.14.2.10.1. Änderung der Basisschriftart
	2.14.2.10.1.1. Änderung, falls es ein Schriftpaket gibt
	2.14.2.10.1.2. Änderung der Basisschriftart auf eine Schriftart mit Serifen
	2.14.2.10.1.3. Änderung der Basisschriftart auf eine Schriftart ohne Serifen

	2.14.2.10.2. Unterscheidungen durch String-Vergleich

	2.14.3. Der Druckvorlagensatz RB
	2.14.4. Der Druckvorlagensatz rev-odt
	2.14.5. Allgemeine Hinweise zu LaTeX Vorlagen

	2.15. OpenDocument-Vorlagen
	2.15.1. Grundeinstellung
	2.15.2. Direkte Erzeugung von PDF-Dateien
	2.15.2.1. Variante 1)
	2.15.2.2. Variante 2)

	2.15.3. Vorbereitungen
	2.15.3.1. Adminbereich
	2.15.3.2. Benutzereinstellungen
	2.15.3.3. Auswahl der Druckvorlage in kivitendo beim Erzeugen einer odt-Rechnung (analog bei Auftrag)

	2.15.4. Schweizer QR-Rechnung mit OpenDocument Vorlagen
	2.15.4.1. Einstellungen
	2.15.4.1.1. Mandantenkonfiguration
	2.15.4.1.2. Konfiguration der Bankkonten
	2.15.4.1.3. Rechnungen ohne Betrag

	2.15.4.2. Adressdaten
	2.15.4.3. Referenznummer
	2.15.4.4. Vorlage
	2.15.4.4.1. Zusätzliche Variablen für Vorlage

	2.16. Nomenklatur
	2.16.1. Datum bei Buchungen

	2.17. Konfiguration zur Einnahmenüberschussrechnung/Bilanzierung: EUR
	2.17.1. Einführung
	2.17.2. Konfigurationsparameter
	2.17.3. Festlegen der Parameter
	2.17.4. Bemerkungen zur Bestandsmethode
	2.17.5. Bekannte Probleme

	2.18. SKR04 19% Umstellung für innergemeinschaftlichen Erwerb
	2.18.1. Einführung
	2.18.2. Konto 3804 manuell anlegen

	2.19. Verhalten des Bilanzberichts
	2.20. Jahresabschluss
	2.21. Erfolgsrechnung
	2.22. Rundung in Verkaufsbelegen
	2.23. Einstellungen pro Mandant
	2.24. kivitendo ERP verwenden

	Kapitel 3. Features und Funktionen
	3.1. Wiederkehrende Rechnungen
	3.1.1. Einführung
	3.1.2. Konfiguration
	3.1.3. Spezielle Variablen
	3.1.4. Auflisten
	3.1.5. Erzeugung der eigentlichen Rechnungen
	3.1.6. Erste Rechnung für aktuellen Monat erstellen

	3.2. Bankerweiterung
	3.2.1. Einführung

	3.3. Dokumentenvorlagen und verfügbare Variablen
	3.3.1. Einführung
	3.3.2. Variablen ausgeben
	3.3.3. Verwendung in Druckbefehlen
	3.3.4. Anfang und Ende der Tags verändern
	3.3.5. Zuordnung von den Dateinamen zu den Funktionen
	3.3.6. Sprache, Drucker und E-Mail
	3.3.7. Allgemeine Variablen, die in allen Vorlagen vorhanden sind
	3.3.7.1. Metainformationen zur angeforderten Vorlage
	3.3.7.2. Stammdaten von Kunden und Lieferanten
	3.3.7.3. Informationen über den Bearbeiter
	3.3.7.4. Informationen über den Verkäufer
	3.3.7.5. Variablen für die einzelnen Steuern
	3.3.7.6. Variablen für Lieferbedingungen
	3.3.7.7. Informationen über abweichende Rechnungsadressen (nur Verkaufsbelege)

	3.3.8. Variablen in Rechnungen
	3.3.8.1. Allgemeine Variablen
	3.3.8.2. Variablen für die schweizer QR-Rechnung
	3.3.8.3. Variablen für jeden Posten auf der Rechnung
	3.3.8.4. Benutzerdefinierte Variablen für jeden Posten auf der Rechnung
	3.3.8.5. Variablen für die einzelnen Zahlungseingänge
	3.3.8.6. Benutzerdefinierte Kunden- und Lieferantenvariablen

	3.3.9. Variablen in Mahnungen und Rechnungen über Mahngebühren
	3.3.9.1. Namen der Vorlagen
	3.3.9.2. Allgemeine Variablen in Mahnungen
	3.3.9.3. Variablen für jede gemahnte Rechnung in einer Mahnung
	3.3.9.4. Variablen in automatisch erzeugten Rechnungen über Mahngebühren

	3.3.10. Variablen in anderen Vorlagen
	3.3.10.1. Einführung
	3.3.10.2. Angebote und Preisanfragen
	3.3.10.3. Auftragsbestätigungen und Lieferantenaufträge
	3.3.10.4. Lieferscheine (Verkauf und Einkauf)
	3.3.10.5. Variablen für Sammelrechnung

	3.3.11. Blöcke, bedingte Anweisungen und Schleifen
	3.3.11.1. Einführung
	3.3.11.2. Der if-Block
	3.3.11.3. Der foreach-Block

	3.3.12. Markup-Code zur Textformatierung innerhalb von Formularen
	3.3.13. Hinweise zur Anrede

	3.4. Excel-Vorlagen
	3.4.1. Zusammenfassung
	3.4.2. Bedienung
	3.4.3. Variablensyntax
	3.4.4. Einschränkungen

	3.5. Mandantenkonfiguration Lager
	3.6. Schweizer Kontenpläne
	3.7. Artikelklassifizierung
	3.7.1. Übersicht
	3.7.2. Basisklassifizierung
	3.7.3. Attribute
	3.7.4. Zwei-Zeichen Abkürzung

	3.8. Dateiverwaltung (Mini-DMS)
	3.8.1. Übersicht
	3.8.2. Struktur
	3.8.3. Anwendung
	3.8.4. Konfigurierung
	3.8.4.1. Mandantenkonfiguration
	3.8.4.1.1. Reiter "Features"
	3.8.4.1.2. Reiter "Allgemeine Dokumentenanhänge"

	3.8.4.2. Datenbank-Konfigurierung
	3.8.4.3. kivitendo-Konfigurationsdatei

	3.9. Webshop-Api
	3.9.1. Rechte für die Webshopapi
	3.9.2. Konfiguration
	3.9.3. Webshopartikel
	3.9.3.1. Shopvariablenreiter in Artikelstammdaten
	3.9.3.2. Shopartikelliste

	3.9.4. Bestellimport
	3.9.5. Mapping der Daten

	3.10. ZUGFeRD Rechnungen
	3.10.1. Vorbedingung
	3.10.2. Übersicht
	3.10.3. Erstellen von ZUGFeRD Rechnungen in Kivitendo
	3.10.3.1. Mandantenkonfiguration
	3.10.3.2. Konfiguration der Bankkonten

	3.10.4. Einlesen von ZUGFeRD Rechnungen in Kivitendo

	3.11. Reklamationen
	3.11.1. Konfiguration des Reklamationsmodul
	3.11.2. Reklamation erfassen
	3.11.3. Reklamationen auswerten

	3.12. Dispositionsmanager/Einkaufshelfer
	3.12.1. So kommen die Artikel in den Einkaufswarenkorb:
	3.12.2. Der Einkaufswarenkorb

	3.13. Zeiterfassung
	3.13.1. Konfiguration
	3.13.1.1. Zugriffsrechte
	3.13.1.2. Artikel für Zeiterfassung
	3.13.1.3. Benutzereinstellungen

	3.13.2. Erfassen
	3.13.3. Bericht
	3.13.4. Konvertierung zu Lieferscheinen
	3.13.4.1. Konfigurations-Optionen

	Kapitel 4. Entwicklerdokumentation
	4.1. Globale Variablen
	4.1.1. Wie sehen globale Variablen in Perl aus?
	4.1.2. Warum sind globale Variablen ein Problem?
	4.1.3. Kanonische globale Variablen
	4.1.3.1. $::form
	4.1.3.2. %::myconfig
	4.1.3.3. $::locale
	4.1.3.4. $::lxdebug
	4.1.3.5. $::auth
	4.1.3.6. $::lx_office_conf
	4.1.3.7. $::instance_conf
	4.1.3.8. $::dispatcher
	4.1.3.9. $::request

	4.1.4. Ehemalige globale Variablen
	4.1.4.1. $::cgi
	4.1.4.2. $::all_units
	4.1.4.3. %::called_subs

	4.2. Entwicklung unter FastCGI
	4.2.1. Allgemeines
	4.2.2. Programmende und Ausnahmen
	4.2.3. Globale Variablen
	4.2.4. Performance und Statistiken

	4.3. Programmatische API-Aufrufe
	4.3.1. Einführung
	4.3.2. Wahl des Mandanten
	4.3.3. HTTP-»Basic«-Authentifizierung
	4.3.4. Authentifizierung mit Parametern
	4.3.5. Beispiele

	4.4. SQL-Upgradedateien
	4.4.1. Einführung
	4.4.2. Format der Kontrollinformationen
	4.4.3. Format von in Perl geschriebenen Datenbankupgradescripten
	4.4.4. Hilfsscript dbupgrade2_tool.pl

	4.5. Translations and languages
	4.5.1. Introduction
	4.5.2. Character set
	4.5.3. File structure

	4.6. Die kivitendo-Test-Suite
	4.6.1. Einführung
	4.6.2. Voraussetzungen
	4.6.3. Existierende Tests ausführen
	4.6.4. Bedeutung der verschiedenen Test-Scripte
	4.6.5. Neue Test-Scripte erstellen
	4.6.5.1. Ideen für neue Test-Scripte, die keine konkreten Funktionen testen
	4.6.5.2. Konvention für Verzeichnis- und Dateinamen
	4.6.5.3. Minimales Skelett für eigene Scripte

	4.7. Stil-Richtlinien
	4.8. Dokumentation erstellen
	4.8.1. Einführung
	4.8.2. Benötigte Software
	4.8.3. PDFs und HTML-Seiten erstellen
	4.8.4. Einchecken in das Git-Repository

